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BACKGROUND: This project and its follow-up were motivated by observations of
Osenberg et al. (1992, Spatial scale of ecological effects associated with an open coast
discharge of produced water. Pages 387-402. in J. P. Ray and F. R. Engelhardts, editors.
Produced water: technological/environmental issues and solutions. Plenum Press, New
York.) that the marine mussel Mytilus californianus grows and reproduces less in the vicinity
of oil production platforms in the Santa Barbara Channel. Although they could not find
increased environmental levels of contaminants common in produced water, they established
that the mussels had accumulated barium in their shell to alevel related to their distance to the
nearest platform. Barium is a component of produced water, and the accumulation of this
compound in musselsis a measure for the exposure of mussels to this and other compoundsin
produced water. Similar observations were made with other marine invertebrates. Their results
show that impacts on biological variables were detectable over much greater distances than
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physical variables. This implies that organisms integrate small changes in physiological
properties over moderate time intervals and thereby produce significant effect. The results are
important for two reasons. First, biological effects are necessary to detect very low levels of
contamination. Second, population dynamics can be very sensitive to small changes in the
physiological performance of individuals. This second point is particularly significant as
direct ecologica impacts at the level of populations and communities are commonly
unmeasurable, especially for organisms with some dispersing life stage.

OBJECTIVES: To develop models that describe the sublethal effect of toxicants on the vital
rates of marine organisms.

DESCRIPTION: Models for subletal effects of toxicants requires two components: a model
describing the growth and reproduction of marine organisms in the absence of toxicants; and a
model describing sublethal toxic effects for implementation in growth models. Both
modeling components should be mechanistically justifiable, experimentally testable, and
maximally general. The last point is especially important in light of the enormous number of
possible combinations of species of organism and toxicant; moreover, it israreto find asingle
pollutant in the environment, as usually a cocktail of toxicants is present. It is thus highly
desirable to have one or a few models that fit many organism toxicant combinations. For the
first modeling component, we developed and analyzed several dynamic energy budget (DEB)
models. A DEB model describes the rates at which organisms assimilate and utilize energy
from food for maintenance, growth, reproduction and development. These rates depend on
the state of the organism (age, size, sex, nutritional status, etc.) and the state of its
environment (food density, temperature, etc.). In DEB models, toxic effects show up as
changes in parameter values. Although toxicants can have many different biochemical effects,
it is feasible to summarize different modes of toxicant action through a few toxicity functions
that describe alterations in the rates of feeding, respiration, growth and reproduction due to
toxicant action, since the DEB modeling framework is sparse in parameters.

SIGNIFICANT CONCLUSIONS: The most important finding from this study is that it is
possible to describe many sublethal effects with a few simple toxicity functions. In these
functions, toxic compounds affect the parameters determining the acquisition of energy and
maintenance of viable physiological functions. Those parameters are affected simultaneously
and the effect functions share the scaling (toxicity) parameter; thus, there is no need to
distinguish effects on separate physiological parameters. Marine organisms included in the
study are Mytilus californianus, M. edulis and Crassostrea gigas, toxicants included toluene,
pentachlorophenol, tributyltin, mercury, copper, cadmium, various polyaromatic
hydrocarbons, and produced water, and response variables included feeding rates, respiration
rates, growth and reproduction.

A second important conclusion is that care should be taken to interpolate observations about
toxic effects on the level of individuals to predictions on populations and communities.
Several compensatory mechanisms are in effect with the result that effects on the population
level may appear at multiple trophic levels.
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STUDY RESULTS: The study advanced along two lines: the development of DEB models
and the development of toxicity models. There are two classes of DEB model: net assimilation
and net-production models, the first class being at a more advanced state of development at
the start of the project. To bring the net-production class of models on par with the net-
assimilation models, we developed a net-production model that describes the growth of all life
stages of an organism (Lika and Nisbet, 2000). Furthermore, we explored the generality and
testability of the most advanced net-assimilation model, the kapparule model, and its
potential for use in ecotoxicology (Nisbet et al., 2000). Because food limitation and starvation
phenomena are likely to aggrevate toxicological effects, we studied the dynamics of the
kappa-rule model in a variable food environment (Muller and Nisbet, 2000). The model
predicts that marine mussels have enhanced growth and reduced survival in strongly variable
resource environments, and that mussels favoring growth over reproduction are more
susceptible to stress (e.g., introduction of toxic compounds, food stress) than their
conspecifics with a relatively high reproductive output. We also found that the quality of food
(with regard to nutrient content) can have a profound effect on populations of herbivores and
detritivores (Muller et al., in review).

Although DEB models are sparse in parameters, the number of ways of including sublethal
effects is still undesirably large, especialy since information about which parameter may be
affected by a certain toxicant is generally lacking. In an early contribution (Muller and Nisbet,
1997), we explored the possibility of smplifying and generalizing toxic effects on parameters
that determine the rates of energy allocation in an organism. In a subsequent manuscript
(Muller and Nisbet, in preparation), we tested this generaization with a wide variety of
combinations of organism and toxicant and show that it offers a good description of how
toxicants change the rates of feeding, respiration and growth. Marine organisms included in
the study are Mytilus californianus, M. edulis and Crassostrea gigas, toxicants included
toluene, pentachlorophenol, tributyltin, mercury, copper, cadmium, various polyaromatic
hydrocarbons, and produced water. We aso found that the generalization gives a good
description of changes in reproduction rates. These findings have implications for population
dynamics, and we found that although the introduction of a toxicant always leads to an initial
decline of production, the long term effect may be positive or negative, depending on
compensatory mechanisms (Nisbet et al., 1997). To further investigate the potential effects of
compensatory mechanisms, we performed a sensitivity analysis of the effects of contaminants
on equilibrium densities in simple food chains (Nisbet et al., in prep). This work recognized
that contaminants can affect rate processes at all trophic levels as well as influencing input
and recycling of nutrients.

STUDY PRODUCTS:

Muller, E.B. and Nisbet, R.M. (1997) Modeling the Effect of Toxicants on the Parameters of
Dynamic Energy Budget Models, In Environmental Toxicology and Risk Assessment:
Modeling and Risk Assessment (Sixth Volume), p 71-81, F.James Dwyer, Thomas R.
Doane and Mark L. Hinman Eds., American Society for Testing and Materials.

Nisbet, R.M., Muller, E.B., Brooks, A.J. and Hosseini, P. (1997) Models relating individual
and population response to contaminants. Environmental Modeling and Assessment 2, 7-
12.
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Nisbet, R. M., Muller, E. B., Lika, K. and Kooijman, S. A. L. M. (2000) From molecules to
ecosystems through dynamics energy budget models. Journal of Animal Ecology, 69:913-
926.

Muller, E.B., Nisbet, R.M. (2000) Survival and Production in Variable Resource
Environments. Bulletin of Mathematical Biology, 62:1163-1189.

Lika, K, and Nisbet, R.M. (2000) A Dynamic Energy Budget Model Based on Partitioning of
Net Production. Journal of Mathematical Biology, 41:361-386.

Muller, E.B. and Nisbet, R.M. Sublethal effects of toxicants. a dynamic energy budget
modeling approach compared to experimental results. In Preparation (manuscript
included in full report).

Muller, E.B., Nisbet, R.M., Kooijman, S A.L.M., Elser, J.J. and McCauley, E. Stoichiometric
Food Quality and Herbivore Dynamics. Under review with Ecology Letters.
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FINAL STUDY REPORT

INTRODUCTION

This project and its follow-up were motivated by observations of Osenberg et al. (1992) that
the marine mussel Mytilus californianus grows and reproduces less in the vicinity of oil
production platforms. Although they could not find increased environmental levels of
contaminants common in produced water, they established that the mussels had accumulated
barium in their shell to a level related to their distance to the nearest platform. Barium is a
component of produced water, and the accumulation of this compound in mussels is a
measure for the exposure of mussels to this and other compounds in produced water. Thus,
very low levels of pollutants in the environment may induce significant sublethal toxic effects.
Our broad aim was to develop models that describe the sublethal effect of toxicants on the
vital rates of marine organisms.

We approached our problem along two distinct lines:
e development of models that describe the growth and reproduction of marine organisms
in absence of toxicants;
e development of modules describing toxic effects that could be implemented in those
growth models.

Below we elaborate on the results of the two lines of investigation. In both lines we used three
guiding principles:

¢ the models should be mechanistically justifiable

e the models should be experimentally testable;

e the models should be maximally general.

The first principle is required to maximize the predictive power of a model and to make its
limitations explicit. The second point is obvious. The last point is very important in light of
the enormous number of possible combinations of species of organism and toxicant.
Moreover, it is rare to find a single pollutant in the environment; usualy a cocktail of
toxicants is present. It is thus highly desirable to have one or a few models that fit many
organism toxicant combinations. The three guiding principles, however, may conflict one
another. The first and second principle tend to make models more exclusive, while the last
principle leads, by default, to inclusive models. The art of modeling is then to find the best
compromise.

GROWTH MODELS

Organisms acquire energy from their environment and use it for growth and propagation.
These and other expenditures are commonly modeled in terms of budgets. The simplest
models assume a few fluxes that do not change over time, and use a mass or energy balance
equation to analyze experimental results. A well-known example of this type of model in
ecotoxicology is the “Scope For Growth” methodology. Although these models are useful in
the analysis of toxicological data, they cannot be used to predict the effects of toxicants in a
dynamic environment. More complex models use dynamic equations to describe the change of
a potentially large number of many different budgets and fluxes. Models of both types abound
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in biology, and most are too specific as they decribe the particulars of a few genera only. Our
interest is in simple dynamic models with a limited number of budgets, which we call
dynamic energy budget (DEB) models. A DEB model describes the rates at which organisms
assimilate and utilize energy from food for maintenance, growth, reproduction and
development. These rates depend on the state of the organism (age, size, sex, nutritional
status, etc.) and the state of its environment (food density, temperature, etc.).

At the start of the project only one DEB model existed that met our guiding principle of
maximum generality (see above), the kappa rule model, developed by Kooijman (1986) and
subsequently generalized (Kooijman 2000). There are two classes of DEB model: net
assimilation and net-production models. The kappa rule model is an example of the family of
net assimilation models. To bring the net-production class of models on par with the net-
assimilation models, we developed a net-production model that describes the growth of all life
stages of an organism (Lika and Nisbet, 2000; see below for copies of published papers,
manuscripts and conference abstracts). Furthermore, we explored the generality and testability
of the kapparule model and its potential for use in ecotoxicology (Nisbet et al., 2000).
Although the kappa rule model has been used to describe the growth of many species,
including many marine organisms, its implications for organisms in dynamic food
environments remained largely obscure. Because food limitation and starvation phenomena
are likely to aggrevate toxicological effects, we studied the dynamics of this model in a
variable food environment (Muller and Nisbet, 2000). The model predicted enhanced growth
and reduced survival in strongly variable environments. Food limitation can be experienced
as alimitation of food quantity, which is the standard assumption in growth models, and as a
limitation of food quality, especially for herbivores, such as mussels feeding on algae or
diatoms. We explored the stoichiometric requirements of food for growth (Muller et al., in
review).

TOXICITY MODELS

At the start of this project, toxicity models in a DEB modeling context dealt mainly with the
accumulation of pollutants in organisms, i.e., without physiological toxic effects, or with the
lethal effects of toxicants. We aimed at developing toxic effect functions describing sublethal
effects of toxicants. Toxicants can have many different biochemical effects, and it thus may
seem difficult or impossible to fit many different toxic compounds in one modeling
framework. However, DEB models provide such a framework, since those models are
relatively sparse in parameters. In DEB models, toxic effects show up as changes in
parameter values, and since those parameters are few in number, it is feasible to summarize
different modes of action on the biochemical level through a few toxicity functions that
describe alterations in the rates of feeding, respiration, growth and reproduction due to
toxicant action.

Although DEB models are sparse in parameters, the number of ways of including sublethal
effects is still undesirably large, especialy since information about which parameter may be
affected by a certain toxicant is generally lacking. In an early contribution (Muller and Nisbet,
1997), we explored the possibility of smplifying and generalizing toxic effects on parameters
that determine the rates of energy allocation in an organism. In a subsequent manuscript
(Muller and Nisbet, in preparation), we test this generaization with a wide variety of
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combinations of organism and toxicant and show that it offers a good description of how
toxicants changes the rates of feeding, respiration and growth. We aso found that the
generalization gives a good description of changes in reproduction rates. These findings have
implications for population dynamics, and we found that although the introduction of a
toxicant always leads to an initial decline of production, the long term effect may be positive
or negative, depending on compensatory mechanisms (Nisbet et al., 1997). To further
investigate the potential effects of compensatory mechanisms, we performed a sensitivity
analysis of the effects of contaminants on equilibrium densities in simple food chains (Nisbet
et a., in prep). Thiswork recognized that contaminants can affect rate processes at all trophic
levels as well as influencing input and recycling of nutrients. Model predictions are
gualitatively consistent with data published by Carman et al. (2000), who found both high
mortality of crustacean grazers, and elevated ammonium flux in diesel-contaminated benthic
communities.
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MODELING THE EFFECT OF TOXICANTSON THE PARAMETERS OF
DYNAMIC ENERGY BUDGET MODELS

Erik B. Muller and Roger M. Nisbet

REFERENCE: Muller, E.B. and Nisbet, R.M., “Modeling the effect of toxicantson the
parameters of dynamic energy budget models,” 6th Symposium On Environmental
Toxicology And Risk Assessment: Modeling And Risk Assessment, ASTM STP 622, J.
Dwyer, T. Doane and M. Hinman Eds., American Society for Testing and Materials,
Philadelphia, 1996.

ABSTRACT: Toxicants negatively affect the rates of growth and reproduction of organisms.
Dynamic energy budget models offer a convenient mathematical framework to describe
growth and reproduction by individuals. Since these models take into account the lipid content
of an animal, the accumulation of toxicantsis easily incorporated. This paper deals with the
subsequent effect of toxicants on growth and reproduction. We argue that the concept of non-
competitive inhibition is appropriate to describe the increased maintenance demands and
reduced assimilation due to toxicant action. In this way, energy investment in growth and
reproduction are indirectly reduced.

KEYWORDS: toxicity model, energy budget, DEB, non-competitive inhibition,
reproduction, toxicant.

Several research groups are currently engaged in devel oping mathematical models
relating the effects of toxic compounds on individuals and popul ations of aquatic organisms
[1, 2, 3]. Theimportance of this research is that many management decisions require insight
into potential long-term effects of toxicants on populations, but much experimental
information relates to measured, short-term effects on individuals. The research has two main
parts: (i) modeling the effects on individual growth, reproduction and mortality of toxicant-
induced changesin the rates of acquisition and utilization of energy by individual organisms,
and (ii) determining the implications for population dynamics of these changes.

Toxicants affect organisms by changing some component(s) of the energy budget, as
has been demonstrated by Scope For Growth studies [4, 5]. Dynamic energy budget (DEB)
model s describe the rules by which individual organisms assimilate and utilize energy from
food [6, and references therein]. They incorporate feeding and assimilation rates dependent on
the state of the individual and the environment, together with rules for energy allocation to
maintenance, growth and reproduction (including priorities for energy allocation when food is
scarce). Thusthey provide a convenient mathematical framework within which to model the
mechanisms whereby vital biological rates (growth, reproduction, respiration) are influenced
by exposure to contaminants.

A recent theoretical study [7] has shown that the demography of a population of food-
limited organisms at equilibrium is very sensitive to details of the assumptions on their energy
allocation priorities. The sensitivity arises because energy allocation priorities determine
whether the primary effect of environmental stressisto change fecundity, juvenile
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development time, juvenile mortality or adult mortality. That work was motivated by work on
individual-based models of Daphnia populations [8, 9, 10], but the conclusions have wide
applicability. In particular, thereis potential for population dynamics to be affected, not only
by the priorities for energy alocation, but also by the ways in which energy flows are
influenced by toxicants. Thus we need to understand how to incorporate the effects of
toxicantsinto DEB models.
For any particular situation, we require three models:

» aDEB model

* abioaccumulation model that describes the exchange of toxicants with the

environment and their fate within an organism on the basis of physical properties

(e.g. lipophilicity and affinity for ligands)

» amodel that describes the effects of toxicants on the parameters of the dynamic

energy budget model.
The first two models are easily combined, as has been shown previoudly [6, 11]. Thisis
because the state variables of the first model (stored energy density and a measure of size)
relate to the lipid and aqueous fractions, which are called compartments in a bioaccumulation
model. We are devel oping the third model with three requirements: it should be
mechanistically underpinned, it should be applicable to awide range of toxicants and it should
be mathematically tractable. This paper isa preliminary report of progress towards this
model. From experimental literature at different levels of biological organization, we argue
that the concept of non-competitive inhibition is useful to represent the sub-lethal action of
many toxicants, and show how the parameters of a DEB model will be affected. Weiillustrate
our approach with some cal culations on the effects of "produced water" (discharge from
marine petroleum production) on the growth of mussels.

DYNAMIC ENERGY BUDGET MODELS

There are two types of dynamic energy budget models, designated kappa rule model
and net production model. It is beyond the scope of this paper to present them in detail; in-
depth expositions can be found elsewhere [2, 6]. Instead, some basic notions are given here
for the case when an adult grows under no-starvation conditions. Figure 1 outlines the energy
flowsin the models.

Three types of biomass are distinguished: energy reserves, structural or core biomass
and gonads. The state variables are stored energy density, e, and structural biovolume, V. Food
istaken up and converted into energy at arate that is afunction of the food density in the
environment and of the size of an animal. Energy is spent on maintenance (at arate
proportional to core biomass), growth (proportional to size increase) and reproduction. The
principal differencesliein the rulesfor energy allocation. In the net production model,
maintenance demands are first debited from assimilated energy; what is left is partitioned
between growth and energy reserves, depending how much energy is stored in the reserves.
When the energy density exceeds a threshold value e, energy is allocated from the reservesto
reproduction at arate o proportional to the excess stored energy density. In the kappa rule
model, assimilated energy is first added to the energy reserves. A fixed fraction « of the
energy flowing out of the reservesis spent on maintenance and growth, whereby maintenance
demands take priority. The remainder is then used for reproduction.
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The resulting dynamics of growth, scaled reproduction (e,) and stored energy density
are summarized in the Table. They are given to show how the dynamics are affected when
toxicants are present (see below). The symbols not yet introduced, m, g, ¥, v and V,, are
compound parameters reflecting maintenance costs, growth costs in the kappa rule model,
growth costs in the net production model, the maximal assimilation rate and the maximal
volume an organism will reach at unlimited food conditions, respectively. Finally, f isthe
scaled food density and V,, is the volume of an individual reaching adulthood.

MODELING THE EFFECTS OF TOXICANTS

To model the effects of toxicants on growth and reproduction, a mechanistic concept is
needed that can be used for many toxicants. This section focuses on what toxicants havein
common from an energetic point of view, and how their action might be modeled in a
dynamic energy budget framework. Toxicants that are primarily mutagens and other
irreversible damaging agents are not dealt with here. It should be noted, though, that they
affect mortality and the production of viable offspring and may therefore play an important
role on the population level.

Many toxicants of ecotoxicological interest tend to interact with macromol ecules.
Cadmium, mercury and other heavy metals, either in ionic form or bound to an organic
compound, bind to proteins [12]. Thisis because they have a high affinity for ligands, such as
sulphydryl groups in amino acids, and may consequently disrupt the sulfur bridgesin proteins.
As aresult, heavy metals change the tertiary conformation of enzymes, compete with the
proper cofactor during synthesis of metallo-enzymes, and thereby inhibit many enzymatic
reactions.

Another important group of toxicantsis the class of lipophilic compounds, which
includes aromatic and aliphatic compounds but also the organo-metals mentioned before.
They have a high affinity for the apolar fractionsin an organism and, therefore, readily
dissolve in biomembranes, where they are believed to practice their main toxic activities [13].
Thisisin line with what has been known from quantitative structure activity relationship
(QSAR) studies, which isthat an effect of atoxicant isinversely related to its octanol-water
partitioning coefficient [4]. Since this coefficient is proportional to the partitioning coefficient
between cell membrane and buffer [14, 15], the octanol-water partitioning coefficient is often
successfully applied in toxicity studies[3, 4, 11].

Lipophilic compounds are toxic because they affect the membrane structure and the
enzymes embedded therein [13]. Membranes containing these toxicants show an increased
permeability to ions[15], so their function as a barrier is affected. Thisleads to the dissipation
of energy and areduction in metabolic rates [16, 17]. Thisis enhanced when the toxicant isa
weak acid or base, so that it can cross the membrane in its undissociated, lipophilic form and
then dissociates. In this way, protons are carried over the membrane. The interaction of
enzymes with the membrane is affected by lipophilic toxicants causing enzymatic reactions to
be hampered. The mechanism is poorly understood, but resembles the inhibitory effects of
heavy metals.

So, many pollutants are toxic as aresult of chemical affinities. This not only defines
their partitioning behavior among body compartments, but also their effects on metabolism. In

11
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the context of this paper, this means that the rates of energy fluxes and conversion efficiencies
are reduced in the presence of toxicants. Consequently, we need assumptions to describe the
effects of toxicants on the rate of energy fluxes and conversion efficiencies.

For the effect on energy fluxes, we propose to use the concept of the non-competitive
inhibitor, which is aclassic in enzyme kinetics [18]. This concept is based on Michaelis-
Menten kinetics but additionally assumes an inhibitor that reversibly binds to an enzyme,
which completely inhibits the formation of a product. The binding of substrate and inhibitor
are independent processes. If the chemical pseudo-equilibria are approached rapidly, the rate
of the enzymatic reaction Vi is given by

-1
= vo(l+ l]
K

where VO isthe rate in absence of inhibitors, | the inhibitor concentration and Ki the
saturation constant. When more, independently acting inhibitors are present, the net rate is
obtained by adding the respective fractions of concentrations and saturation constants to the
denominator.
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FIG.2  Therate of ATP production by mitochondriaisinhibited by cadmium. The rate is appropriately
described by non-competitive inhibition kinetics with K; = 15.3 (+1.1) uM (see equation above). Data
from Kesseler and Brand [19].
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This relationship operates on the molecular level. Dynamic energy budget models,
however, are focused on individual organisms. Two arguments support our proposal to use the
concept of the non-competitive inhibitor in dynamic energy budget modeling. First, non-
competitive inhibition kinetics can be satisfactorily applied to systems that are more complex
than single enzyme mixtures. Figure 2 illustrates that the inhibition of mitochondria by
cadmium is appropriately described in a non-competitive way. Similarly, the respiration rate
of cell suspensions with Nitrobacter winogradskyi is non-competitively inhibited by nitrous
acid [20]. The second argument is that dynamic energy budget models treat the conductance
of energy in away that is conceptually similar to Michaelis-Menten kinetics. The link to non-
competitive inhibition kinetics is thus a natural one.

We also need to consider the effects of toxicants on energy conversion efficiencies.
The efficiency of oxidative phosphorylation in potato tuber mitochondriais almost unchanged
at low cadmium concentrations (see Figure 3), while the rate of ATP production drops
immediately (see Figure 2). At higher cadmium concentrations, the efficiency is reduced,
although not as drastically as the reduction in the ATP formation rate. This suggests that at
relatively low toxicant concentrations the primary toxic effect is on rates. Because this effect
is quite large, the toxicant concentration at which an animal cannot surviveisrelatively low
(see below). Thusit is consistent with these data to assume that the toxic effect on conversion
efficienciesis negligible at physiologically relevant toxicant concentrations, though of course
other toxicants may have a more pronounced effect on conversion efficiencies.
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FIG.3  Cadmium reduces the efficiency of oxidative phosphorylation, which is expressed as the fraction of
ATP formation and oxygen consumption relative to the theoretical maximum stoichiometry. Data from
Kesseler and Brand [19].
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Having concluded that toxic effects are most likely to affect the rate parameters of the
DEB models, we note that there are two parameters of that kind in both models: the energy
conductance rate v, which includes the assimilation rate, and the maintenance rate, m. The
energy flux to growth is derived on the basis of balance equations and thus does not contain
an independent rate parameter. Thisis also the case for energy used for reproduction in the
kappa model formulation. The net production model, however, contains an independent
reproduction rate parameter, o. For the sake of simplicity, we assume that toxicants act
equally adversely on all energy fluxes, thereby considering that the biochemistry involved has
presumably alot in common. When data show otherwise, there is, of course, no objection to
differentiate between toxic effects on the rate parameters. Then, v and ¢ are here smply
multiplied by the same function of the toxicant concentration as were enzymatic rates before.
The implementation of toxicants in the maintenance rate is more subtle. Maintenance
demands are defined as the amount of energy required to keep an animal in aviable state for a
period of time. This means that an animal cannot cut down on maintenance. To get sufficient
energy to processes involved in maintenance, the maintenance rate should be multiplied by the
inverse of the toxic effects function. The expressions for the rate parameters then become:

- Y%
~l+c
m, = m,(1+c)

c

o,
o =0

¢ 1+c

where c is the toxicant concentration scaled to the saturation constant. Just as for non-
competitive inhibitors, adding more toxicants is a matter of adding their scaled concentrations
to the denominator. In an environment that is polluted with various toxicants, the final
response will be dominated by the few compounds that are readily taken up and are present at
the highest concentrations and are the most toxic.

APPLYING THE TOXIC EFFECT FUNCTIONS

To utilize the functions describing the effect of toxicants on rate parameters, we need
to define the toxicant concentration c. Toxicants that are dissolved in adipose tissue are
unlikely to exert direct effects. On the other hand, those dissolved in the lipid bilayer of
membranes have alarge impact. The simplest solution isto consider the target sites of
toxicants as a part of structural biomass and assume that the water content of energy reserves
and reproductive matter is negligible. The ideais that energy reserves and reproductive matter
consist mainly of lipids and other insoluble storage materials [6]. The consequence is that
energy reserves and reproductive matter are biochemically relatively inactive and thus hardly
subject to toxic action. There are quite a few subtleties, though, involved in the mapping of
biochemical composition to model variables [6], but these are beyond the scope of this paper.
Then in accordance with others[1], the toxicant concentration in the agueous fraction is the
concentration in the toxic effect functions. This argument also covers lipophilic toxicants,
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since the concentration in biomembranes is proportional to the aqueous concentration when
equilibriaare rapidly settled.

The toxicant concentration in the agueous fraction can be described with a
bioaccumulation model [11]. The key notions are that toxicant exchange with the environment
is viathe aqueous fraction, and that toxicants partition over body compartments, which
depends on their affinity for the biochemical composition of the compartments. Since the
compartment sizes are determined by the dynamic energy budget model, our effect functions
fit in naturally under the restriction that the toxicant is not metabolized.

Some compounds have no effect when present at low concentrations. The maximum
concentration at which no effect is observed is the no effect concentration. Some compounds
are essential for growth but become toxic at higher concentrations. Among them are copper,
zinc and nickel that are cofactors in metallo-enzymes. The concentration of such compounds
inionic form is controlled by metallothioneins that have a high affinity for such ions. Such
proteins have also a high affinity for heavy metals without a known physiological function,
such as cadmium and mercury. As aresult, an organism may contain small concentrations of a
heavy metal and yet show no physiological response. Whatever mechanism is behind the no
effect concentration, it can be accounted for by correcting the concentration expected on the
basis of partitioning behavior. The no effect concentration is then an additional parameter,
which can be estimated to assess the risks of atoxicant [1].
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FIG.4  Thefina length and cumulative reproductive output of a mussel isindirectly reduced by toxic effects
on the assimilation and maintenance rate. The results were calculated with simulations by assuming an
initial 3 cm mussel in a constant environment during 120 days.
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To illustrate the impacts of toxicants, we predicted the growth and reproduction of the
bay mussel Mytilus edulis with numerical methods. The purpose isto study how healthy, 3 cm
long mussels that are outplanted near oil production platforms would be affected by toxicants
in produced water [21]. For this we used the kappa rule model, which has been parameterized
for bay mussels [22]. The environmental conditions and aqueous toxicant concentrations were
supposed to be constant. As aresult, the toxicant concentrations are scaled versions of each
other and can be treated as a single variable. Furthermore, 10 % of the energy flowing out of
the reservesis assumed to be used for reproduction and the scaled food density selected was
80% of its maximum value. Then, the predicted length and reproductive output after 120 days
isshown in Figure 4. It is obvious that growth and reproduction are strongly affected by
toxicants, although indirectly via a decreased assimilation rate and increased maintenance
requirements. A 3 cm long mussel cannot grow at scaled toxicant concentrations above 0.9.
Then, the reproductive output drastically declines. Thisis because mussels are starving and
need to cut down on reproduction in order to meet maintenance. At a scaled toxicant
concentration slightly below 1, reproduction stops as well. From that concentration onwards,
where the maintenance rate is doubled and the energy conductance rate halved, a 3 cm long
mussel will die because of starvation.

DISCUSSION

We started this paper by noting that a model of the effects of toxicants on growth and
reproduction of organisms has 3 components: a DEB model, a bioaccumulation model, and a
model of the effects of toxicants on the parameters of the DEB model. Previous work has
addressed problems relating to the formulation of DEB models appropriate for application to
toxicology [1, 2], and the formulation of biocaccumulation models [6, 11]. Thereisamuch
smaller literature on the third component, and the work reported here represents some
preliminary ideas on that problem.

Our main conclusion is that the action of many toxicants are properly characterized by
non-competitive inhibition. For this, we have analyzed data from experiments on the effects of
toxicants at the level of single enzymes, organelles and organisms. The mechanism provides
an underpinning for functional forms assumed by K ooijman and co-workers in recent research
[1]. For example, they assumed that the first order Maclaurin expansion of an unknown
toxicity function gives a satisfactory approximation under physiological relevant conditions.
In other words, effects are linear in the toxicant concentration. This gives similar results to
ours for the effect on maintenance rate, but for other rates gives alinear decrease which can
only be valid at small concentrations; otherwise energy fluxes would become negative at high
toxicant concentrations, which means that energy reserves are leaking into the environment.
Here, ingestion and assimilation are irreversible processes even at relatively high toxicant
concentrations, as they should be.

Anincreasein realism yields amodel that can be applied to situations in which
organisms are serioudly affected by toxicants. Kooijman and co-workers have principally
centered on no effect levels and included effects on conversion efficiencies. They analyzed
data on growth and reproduction by assuming that toxic effects are exerted through one rate
process or conversion efficiency at atime. For the estimation of the no effect concentration,
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they have shown that it hardly matters which processis supposed to be affected. Thisis
because the no effect concentration is to depend on when a mechanism starts to take effect
rather than the mechanism itself. Hence, this approach has yielded a powerful tool to analyze
standard toxicity tests. Our approach should be applicable to study the effects of toxicants on
the growth and reproduction of individuals.

The next logical step isto test the model with experimental data on growth and
reproduction. For thiswe will use data from mussels outplanted near an oil production
platform [21]. Finally, we recall that this work was motivated by questions in population and
ecosystem dynamics. It is possible to incorporate an assumption of non-competitive
inhibition by atoxicant into a very simple biomass-based model of a plant-herbivore system.
Theresult isamodel that is capable of exhibiting a wide range of types of population
dynamics (Nisbet and Hosseini, unpublished research). Of particular interest is the existence
of a set of parameter values for which the fate of the system depends on initial conditions.
Thiswill also be a subject of future research.
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Models relating individual and population response to contaminants

R.M. Nisbet, E.B. Muiler, A J. Brooks and P. Hosseini
Department of Ecology. Evolution and Marine Biclagy, University of California, Sonta Barbara, CA 93106, USA

Even when present at sub-lethal levels, toxic compaunds have an effect on the dynamics of s population, expressed throagh altered
growth and repraduction mics. We explore some of the potential cffects of tuxicants on populations, using a simple model that considers
4 generic toxicant and populations of twa species, & primary producer, and a consumer Yiving under food-limited conditions. The toxieant
is assumed to affect the consumers only, and it may enter them either dircetly from the cnvironment or vis their food, the latter opening
the possibilicy of biomagnification. The initial responsc of the consumer to introduction of a toxicant is invariably a decline in ifs
fecundity and density. Howeves, in the longer term, the equilibriurn densitics of both producer and consumer may increase or decroase,
depending on parameter values and ambient toxicant levels, The surprising caxa of an increased equilibeium in respongs to the loxicant
oceuys if, in the absence of toxicant, the consumens held the producers at a very low level, analogous to ‘overfishing’ in fishery studies.
If the toxicant cnters the consumer via food, multiple, non-trivial equilibria are possible. The complex, but inerpretable, dynamics
exhibited by thest simple models will be used to guide studies with more realistic models, for whose development this study forms a

prelude.

1. Introduction

Concepts related to energy flow are used in studies at all
levels of biological and ecological organization, Energetic
procosscs arc important in determining the consequences
of environmental stress, notably in responses to sub-lethal
concentrations of contaminants, which commonly influence
assimilation and respiration rates. For cxample, energetic
processes in mussels are affected by metals, organomeials
and organics, and have been characterized in terms of scope
for growth, defined as the difference between assimilation
and respiration rates. A comprchensive study of this type
(Widdows ¢t al. [15]) showed a strong correlation between
scope for growth and body burdens of many toxicants in
mussels from various North Sea locations. Contaminants
also directly or indirectly affect growih and reproduction
(c.g., Kooijman and Bedaux [6] and references therein),
and may have effects on the population dynamics of sim-
ple systems, ¢.¢., a study by Borgmann ¢t al. [1] of changes
in the dynamics of Daphnia in mesocosms with added cad-
mium.

Many environmental concems involve mwlti-gencration
population and/or community effects, but most experimen-
tal data are obtained from short-term experiments on in-
dividuals. Structured population models, in which a pop-
ulation iz assumed o consist of a very large number of
individuals sharing a common environment (e.g., Metz and
Diekmann [7]; Tuljapurkar and Caswell [14]), have the po-
tential to relate the large body of physiological information
on individual responses to environmental stress with the
less accessible issues of population dynamics and demog-
raphy. The key Lo the use of structured population models
is a testable model of growth, reproduction and mortality
of individual organisms (e.g., Murdoch et ai. [11]), and we
have argued elsewhere (Nisbet ot al. [13]} that dynamic en-
erpy budget (DEB) models (Kooijman |5)) are ideal for this

@ Badtzer Scitnce Publishers BY

purpose. DEB models describe the assimilation of food by
individual organisms and its allocatzon fo growth and repro-
duction. Nisbet et al. [13] reviewed two families of DEB
model which differ only in the assumed prioritics for dis-
Iributing energy, and made preliminary studies of the effects
of toxicants on individua! performance by making use of
empirical data on toxicant-induced changes in assimilation
and respiration rates,

In general, a modcl of individual response to toxicant
exposure will have three components: (i} a DEB model
predicting growth and reproduction; (ii) a bivaccumulation
model describing the exchange of toxicant between organ-
ism and environment and its partitioning within the organ-
ism; and (iii) a model of toxicant action. Toxicants act on
processes at the molecular and suborganismal level, but it
is assumed that the effects of these processcs may be de-
scribed through changes in the instantaneous values of the
perameters in a DEB model (Kooljman and Bedaux (6];
Muller and Nisbet [8]). From a study of published data
on the effects of free cadmium on rates and cfficiencies of
ATP production, Muller and Nisbet [R] proposed that rate
parameters were affected more strongly than conversion ef-
ficiencies and that the effect of toxicants was well described
by non-competitive inhibition kinetics.

This paper addresses a few of the implications for pop-
ulation dynamics of the individual responses to toxicants
suggested by Muller and Nisbet. Each individual grows and
reproduces in accordance with a very simple DEB model.
We focus on situations where a ‘consumer' population is
regulated through food availability and show that in such
cases, the long-term effects of toxicants may he that both
consumecrs and food settle to new equilibrium densitics. We
show that the long-term changes in demographic quantities
such as fceundity (which are commonly measured in toxi-
city tests) for individuals in food limited populations may
be very differcnt from short-term responses measured at
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constant food density. We also investigate how the fate
of a population depends on the state of the population and
its environment al the time when exposure to the toxicant
starts.

2 A éimple dynamic energy bodget model
2.1, Biomuss dynamics

The simplest DEB-based model of a food limited popu-
lation leads to dynamics which are described by equations
very similar to the well-known Lolka-Volterra equations.
We consider two species, ‘primary producers’ or ‘food’
with density F(f) and 'consumers’ with density C(f). We
assume that in the absence of consumers, the producers
would grow logistically with parameters r and X, and make
the following assumptions conceming the consumers:

s Consumers search randomly for food at a rate propor-
tional to their biomass.

+ All food encountered is eaten and converted into con-
sumer biomass with a constant efficiency e.

¢ Consumers have a constant per capita death rate m.

* All consumers have a constant respiration rate b per unit
biomass.

The producer biomass density changes through time in ac-
cordance with the differential cquation

%ii = rF(l - F/K) - aFC,

(1)
where a denotes the volume or area searched per unit time
per unit of consumer biomass. The consumer dynamics
can be derived by considering the biomass balance: new
biomass is produced by conversion of food, and biomass is
tost through death and respiration. Thus

dc

Ty =eaF'C — (m+ b)C.

Provided K is large enough for the producer to support
a consumer population, the model predicts stable equilibria

given by

Q)

_ m+b
eak |’

3)

p=0El o ’[1

ea a
2.2. Equilibrium demography

The equation for consumer biomass could be derived
without a rule describing how assimilate is partitioned be-
tween growth and reproduction. This is because the as-
similation efficiency is assumed 1o be constant, regardless
of the allocation of assimilate. In order t0 model demo-
graphic properties, such as fecundity and age structure, we
need additional assumptions. Suppose all individuals have
biomass wy at birth, and mature (i.e., start reproduction)
when they attain a critical biomass w,,. Juveniles assign
100% of net production (assimilation minus maintenance)
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se 1 Conte

to biomass. If net production is positive, adults assign a
fraction pi(1) of net production 1o biomass and the remain-
der to reproduction. If net production is negative, adults
cease reproduction. With these assumptions, the biomass,
w, of an individual changes according to the differential
equation

d
E’f‘ = g(w, 1) = £[eaF(2) - blw, e

where

€= p(w) ifeaF(H)—b>0and w>wy, (5}

and £ = 0 otherwise,

The dynamics of a population are described by two
partial differential equations {PDEs). An age distribution,
Sf(r,t), is defined by specifying that f(7, ) d7 is the num-
ber of consumers with ages in an infinitesimal age interval
T — 7 +dr at time t. As all consumers are assumed to
experience the same common food environment F(£), indi-
viduals born at the same time grow at the same rate. Then
w(r,t) is defined as the weight of an individual aged = at
time 1. The population dynamics arc then obtained from
the solutions of two simultaneous PDEs:

af af 3
§+E-+mf_o, (6)
| Sw

gw + B = —g(w, £), o

which have to be solved with the renewal conditions

FO, 8 =yt f (1-&)[eaF()—b)w(r, ) f(r,t)dr, (8)
aQ

wf(, £} = w,. N

At a constant food density F, the fecundity (i.c., number
of offspring produced per unit time) of an adult of weight
w s

B =—( — &)[eaF ~ ] 10
= €a (10)
and the time required for a juvenile to grow from birth to
maturity is
Ty = (ea?—b)"ln[w—"‘]. (11)
Wy

By contrast, if the ¢consumer population is food limited
and at equilibrium, the producer density cannot have an ar-
bitrary value, but must take the value that makes consumer
birth and death rates equal. The time T taken to grow
through the juvenile stage can be derived by replacing Fr
in cquation (11} with F* from equation (3) to obtain

-~ (12)

1
Tr=—1In
m

General theory for the equilibrium demography of food lim-
ited populations was developed by Gurney et al. [3]. The
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Figure 1. Predicted producer and consurner equilibrivm biomasses for the
basic model a5 a function of the scaled inhibilory effect of a toxicant for
two values of prodlucer carrying cepacity; K = 0.1 and K = 0.5, Other
parameicr vidues were as follows: 0 = 6.0, e =05, d =003, 6 = {1,
r =10 and p = 0.9. Broken linc - predicted producer equilibriat
biomass. Solid line - predicted consumner equilibrial biomass.

formulac in that paper arc gready simplified by the assumnp-
tion of a constant per capita death rate, the equilibrium val-
ues of the through stage survival for juveniles, S;, and the
mean fecundity, A, being related to each other and o Ty
by the equations

BS; =wm, 8; = exp{—mT). (13

2.3. Effects of a toxicant

We now consider the eifects of a generic toxicant which
influences rate processes in a manner similar to that pro-
posed by Muller and Nisbel [8]. We assume that the tox-
icant enters the consumer directly from the environment
and quickly artains a pseudo-equilibrium state in which the
toxicant level in the animal is direcily proportional 10 the
ambient concentration. Then, as the ambient toxicant con-
ceatration increases, the assimilation rate reduces hyper-
bolically and the respiration rate increases linearly. The net
assimilation efficiency, e is unchanged, but o and b change
as follows:

a

a g, 7.
1 +¢fep

b Bl +cjco)  (14)

21

0.0 4 p

] T
L] 160 173

- 0,02

T T T ¥ Q
o6 218 /e 276 M0

K=0.5

Producer and Consumer Biomasses
Consumer per Capita Fecundity

Figure 2. Producer and consumer biomasscs, and consumer per capita
fecundity for the batic model against time before and afier the introduction
of a loxicant et time ¢ = 175. Results are shown for two different levels of
producer carrying capacity; K = 0.1 and K = 0.5. The scaled inhibitory
effect (X) of the toxicant was st cqual to 0.3 in both cases. Purameter
values as in figure 1 with in addition: W, = 1.0, W, = 4.0. Solid line
- predicted producer biomass, Dotted line — predicted consumer biomass,
Broken line ~ predicted consumer per capita fecundity.

where cp, the half-saturation constant, is the concentration
at which assimilation is halved and respiration is doubled,
The toxicant reduces the weight specific assimilation rate a
by an inhibition factor X = ¢/(c + ¢p), and increases the
maintenance requirements.

Since the presence of a toxicant reduces o and in-
creases 5, it follows from equation (3), that toxicants in-
crease the equilibrium producer density. However, the cf-
fect on the equilibrium consumer density depends on pa-
rameter values, and figure 1 exemplifies situations where
consumer density may increase or decrease depending on
the value of K. The eye-catching result is that the cquilib-
rium consumer density may increase as a result of toxicant
action. This arises because the combination of a reduced
weight-specific feeding rate and a higher maintenance rate
implies that a higher equilibrium food density is necessary
to suslain a consumer population. And although the en-
hanced respiration mitigates the final result, a higher food
density may support a higher consumer density (see equa-
tion (3)). This counter-intuitive result is anatogous to what
is predicted by existing fishery models: if the consumer is
‘overfishing' at equilibrium, then a reduced fishing rate will
ultimately yield a higher standing crop.

Figure 2 illustrates the cffects of adding toxicant to a
population initially at equilibrivm in an uncontaminated en-
vironment. The biomass densities move to new values con-
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sistent with the graphs in figure 1, but of more interest is
the change in demographic quantities. The initial effect of
the toxicant is to reduce (for example) the mean fecundity
as predicied by equation {10), but equations (12) and (13)
show that the equilibrium values of the consumer's demo-
graphic atiributes are independent of a and b, the model
parameters potentially affected by toxicants. Thus the ef-
fects of toxicant-induced changes in these parametets must
ultimately be balanced by the effects of the incteasc in pro-
ducer density. Figure 2 confirms this,

3. More complex dynamics

In the previous section, we assumed that the toxicant
concentration within the consumer was always proportional
to the fevel in the environment. However, many animals
absorb contaminants by eating contaminated food, so that
the internal concentration of toxicant at any time depends
on the organism’s feeding history. We now investigale a
particularly simple model of this situation, using an un-
structured formalism similar to that used in many models
of elemental flow in microbiological systems (e.g., Kooij-
man (5], and references therein).

‘We use the term toxicant density to represent the amount
of toxicant per unit of system volume. If absorbed by an
organisim, we say the toxicant is bound in that organism;
otherwise we say it is in the ‘environment’. The ambient
toxicant density ip the environment, Sg(f), is just a reg-
ular concentration, but the toxicant densitics in food and
consumer, Sp(t) and So(t) respectively, are less inluitive
quantities, being the total amount of toxicant bound in the
food or consumer, scaled to the system volume. Such den-
sity measures are convenient, because they are not diluted
by growth of the producer or consumer.

If toxicant enters the system at a volume-specific rate T,
and is absorbed by the ‘producer’ organisms at a rate
aFSg, then

dSg

de

where the constant a can be interpreted in a manner anal-

ogous to the parameter ¢ in equation (1), and represents

the volume cleared of toxicant per unit time per unit bio-

mass mass of producers. The term ‘recycling’ represents

any toxicant that is released from organisms back to the
environment, and is discussed later.

Absorption of toxicant causes the concentration of tox-
icant bound in the producers to increase at a rate aF'Sg.
Toxicant is transferred to the consumer pool when conta-
minated food is caten. Thus the concentration of toxicant

bound in the producers obeys the equation:

dSF

W =0’FSE—(IOSF. {18}

Modeling the amount of toxicant bound in the consumer
introduces a few further subtletics. First, since a consumer
only successfully absorbs a fraction e of ingested food, we

=T — aF§s + ‘reeycling’, (15)

R.M. Misber et al. / Models relating individual and population response to contaminangs
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Producer and Consumer Biomasses
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Figure 3. Predicted producer and consumer equilibrium biomesses #& &

function of the toxicant supply rate, T, for the model with toxicant ab-

sorbed via the food. Parameters are: @ = 6.0, ¢ = 0.5, d = 0.03, b =

0.1, gp=1, r =1.0and K = 0.3. Thin iinc - prediceed producer equi-

librium biomass. Thick line - predicted consumer equilibriom bipmass.

Broken lines denote unsable equilibrin  There is always an alternase,
locally stable equilibrium with F* = 0.3 and ©* = 0.0,

require an assumption about the toxicant associated with
the remaining unassimilated food. This requires a model of
cgestion and of subsequent processing of egested material in
the environment. For maximum simplicity, we here assume
that all toxicant in egested food is instantancously recycled
to the environment. Second, respiration does not affect
the denmsity (as defined above) of toxicant bound in the
consumer. Third, we assume that toxicant bound in dead
consumers disappears from the system. Then changes in
8¢ are described by the differential equation

d5

di

The ‘recycling’ term in equation (i5) is (1 — €)aCSp, and
equation (15) becomes

dSg

dt
The dynamics of the system ars now described by five
equations: (1), (2), (16), (17), and {18).

Our measure of bound toxicant density, though conve-
nient for writing down balance equations, has little biolog-
ical significance. A more meaningful measure is foxicant
quota, qp (or q¢), defined ag the amount of bound toxi-
cant per unit of producer (or consumer) biomass, With this
definition,

eaCSp — mC, (17)

=T —-alSg +(1 - €)aC8p. (18)

Sp=Fgr and S¢ = Cqe. {19

We now assume that the consumer parameters, a and b, vary
with toxicant quota in a4 manner similar to that implicd by
non-competitive inhibition. Thus in place of equation (14),
we subsiitute

i)

S Dy b = M1 + g¢/q0).

20
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Figure 4. An cxample of the dependence of final system state on initial conditions for the simuation depicted in figure 3, Two sets of numerical sclutions
arc shown, with parameters as in figare 3, but different nitial values of Sp, the concentmtion of toxicant bound in the producers,

Figure 3 shows the variation in producer and consumer
equilibrium densities with changes in T, the toxicant supply
rate. Comparison with figure | reveals many similarities,
for example the existence of a critical toxicant supply ratc
above which the consumers are driven extinct. Howevet,
there is one noteworthy difference between the two figures:
the existence in figure 3 over all values of I' of muliiple
equilibria with the fate of the system depends on initial con-
ditions. The continuous lines in that figure represent locally
stable equilibria, the alternate stable equilibria having the
producers at carrying capncily and the consumers extinct,
Note that for these parameters, as the toxicant supply rate
increases, the values of the stable equilibriom values of both
producers and consumers also increase, However, the range
of initial conditions that lead to extinction also increases.
Figure 4 gives an example of trajectories approaching the
different equilibria.

4, Discussion

The dynamics of ecological systems are complex, and
realistic mathematical models are commenty analytically
intractable. For this reason, it is useful to study carica-
tures of real systems in order to obtain intuition and insight
into possible mechanisms. Progress then involves studying

both simple and more complex models of the same system.
This approach has proved successful in 2 number of pop-
ulation dynamic studies, where variants of a few models
that exploit very simple assumptions (e.g., Lotka—Volterra,
Nicholson—Bailey) are used to guide the formulation, analy-
sis and testing of more realistic models (Murdoch and Nis-
bet [10] and references therein).

Using simple models, this paper explores the impacts of
toxicants on population dynamics. We started by arguing
that models of the population level consequences of toxi-
cants should be based on dynamic energy budget models
of individuals. Population dynamics arc then derived using
a well developed formalism for structured population mod-
els. In general, the resulting models are mathematically
intractable and involve soveral partial differential equations
that must be solved simnultanecusly, Numerical analysis
of such equations is being used in some ecotoxicological
studies (e.g., Hallam et al. [4]). Here we made a series
of simplifying assumptions which lead to Lotka—Volterra-
tike, ordinary differential equations for biomass dynamics.
Similarly, we simplified the description of toxicant action,
and ignored subtleties associated with bioaccumulation. In
the future, we will move towards more complex models
in order to broaden our understanding of toxic imipacis on
populations.

23
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Two ‘take-home’ messages emerged from this study,
The first concerns how, following introduction to a closed,
food-limited system, toxicants affect the short-term and
long-term (multi-generation) behavior of populations. The
short-term effect of a toxicant is similar to a step-down in
food density: lower fecundity and slower juvenile devel-
opment. However, these short term demographic changes
lead (o fluctuations in consumer density, which in wrn cause
fluctuations in producer density, and so on. The end result
is the establishment of a new (higher) equilibrium producer
density at which the fecundity and juvenile development
time have the same values as in the uncontaminated envi-
ronment. This precise result is a consequence of the very
specific assumptions of our model, but the compensatory
mechanisms just discussed will occur in any model of a
closed system unless there are no density dependent rates
in the consumers (Murdoch [9], Murdoch et al. [12]). We
do not in general expect demographic quantities to return
to their original values, but we do expect significant com-
pensation.

The second conclusion from our study concerns the mul-
tiple equilibria found in the model where the toxicant en-
tered the consumer via the producers. It is common (o find
complex dynamics in cven the simplest population models,
and, it becomes important to evaluate the biological plausi-
hitity of the mechanisms behind the complexity. The mul-
tiple equilibriz in our model arose because we included no
mechanism to limit bicaccumulation in the producer pop-
vlation. Whether this assumption is reasonable or not de-
pends on the system under study. The message is that
population dynamics will be influenced strongly by the re-
cycling of toxicant within the entire system, and that a
realistic, DEB-based model of populetion dynamics will in
general require coupling to a mode] of recycling within the
system.
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Summary

1. Dynamic energy budget (DEB) models describe how individuals acquire and uti-
lize energy, and can serve as a link between different levels of biological organiza-
tion,

2. We describe the formulation and testing of DEB models, and show how the
dynamics of individual organisms link to molecular processes, to population
dynamics, and (more tenuously) to ecosystem dynamics.

3. DEB models offer mechanistic explanations of body-size scaling relationships.

4. DEB modeils constitute powerful tools for applications in toxicology and bio-
technology.

5. Challenging questions arise when linking DEB models with evolutionary theory.

Key-words: bioenergetics, dynamic energy budgets, ecosystems, ecotoxicology,

population dynamics.

Journal of Animal Ecology (2000) 69, 913-926

Introduction

One aim of theory in biology is to relate processes
ut different orgamzational levels (molecules, cells,
organisms, populations. ecosystems). For example,
the cell cycie may be described in terms of a
sequence of molecular events, and population
dynamics may be based on the dynamics of indivi-
dual organisms interacting with their environment.
The questions of interest are different at cach level,
but two basic principles invariably operate: biologi-
cal systems obey the laws of thermodynamics and
biological entities are the result of evolutionary pro-
cesses. Thermodynamic laws constrain fluxes of
energy and elemental mass, which arc most conveni-
enily identified at the level of individual organisms,
while evolution makes stringent demands on the
reproductive performance and viability of indivi-
duals. Thus, a general model describing the acquisi-
tion of energy by an individual corganism, and its
utilization for growth, reproduction and survival,
has the potential te link to processes at other levels.

Correspondence: R.M. Nisbet, Department of Ecology,
Evolution and Marine Biology, University of Culilornia,
Sunta Barhara, CA 93106-9610, USA. E-mail: nisbet@:li-
fesel, uesh, edu

25

A successful model based on such dynamic energy
budgets (DEB) must be consistent with molecular,
cellular and other suborganismal processes, and
should provide the energetic basis for the dynamics
of populations and ecosystems. Moreover, to make
cvolutionary sense, the model! should recognize
shared physiological and biochemical properties
across a wide range of species, and must therefore
atm at maximal generality.

Here, we discuss progress towards theory based
on a DEB moedel, We review recent results regarding
links between levels of biological organization, and
we highlight open questions. We discuss how DEB
models relate growth, reproduction and respiration
of individual organisms to feeding, in a way that
admits tests against experimental data. We show
that DEB models yield insight on subceliular pro-
cesses, and that they make testable predictions
about the dynamics of populations, We conjecture
that they will contribute to our understanding of
ecosystems, Because of their generality, DEB models
yield a theory of body-size scaling relationships, and
are powerful tools for a diverse range of applica-
tions. The apparent successes of DEB models in
describing a bread runge of phenomena pose chal-
lenges for the theory of evolution of energy alloca-
tion strategies,
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Principles of dynamic energy budget modelling
CONCEPTS AND MODEL FORMULATION

DEB modcls use differential equations to describe
the rates at which individual organisms assimilate
and utilize energy from food for maintenance,
growth, reproduction and development. These rates
depend on the state of the organism {age, size, sex,
nutritional status, etc.) and the state of its environ-
ment (foed density, temperature, etc.). Solutions of
the model squations represent the life history of
individual organisms in a potentially variable envir-
onment.

One important use of DEB medels is to relate
observed patterns of growth, development, repro-
duction and mortality in a particular organism to
empirical information on feeding rates and mainte-
nance requirements, the goal of such studies being
to get a close match between data and model
descriptions for a particular species (e.g. Gurney
ef af. 1990; McCauley et al. 1990; Ross & Nisbet
1990; Mangel 1996). A second use, which is the sub-
ject of this essay, takes a single, purameter-sparse,
mechanistic model, and describes a bread spectrum
of biological phenomena and life forms. Species dif-
fer only in their paramecler values. A well-known
exampie of this approach is the von Bertalanffy the-
ory of growth (von Bertalanffy 1957), which fits the
growlh of many erganisms very well with only two
parameters. Von Bertalanfly based his wotk on a
model by Putter which assumes that the rate of
growth of body mass is the difference between the
rates of food uptake and utilization. If the former is
proportional to surface area, the latter is propor-
tional to bedy mass, and the shape of the organism
does not change through life, then a measure L of
the length of an organism of age, 4, is given by L=
Loo~(Loo—Lu){1-exp(—ya)], where Ly, and L, repre-

uptaka assimilation
FOOD

FECES

utilization

sent, respectively, the length at birth and the ulti-
mate length, and the parameter y, commonly called
the von Bertalanffy prowth rate, characterizes the
rate of approach te the final size.

Many empirically based population and evolu-
tionary studies of energy budgets use ‘net produc-
tion” or ‘scope for growth’ models {e.g, Paloheimo
el al. 1982, Ross & Nisbet 1990; Widdows & Don-
kin 1991; Nisbet er af. 1996; Andersen 1997; Lika &
Nisbet, in press), which make assumptions about
allocating the energy from food that remains after
maintenance needs have been met. However, almost
all work on such models foenses on a single life
stage, and we are aware of no work with these mod-
cls that links levels of biological organization. In
this essay, we concentrate on the model for which
the rmost comprehensive bedy of theory exists,
namely the x-rule mode]l developed by Kooijman
{1986, 1993, 2000). Our aim is not to evaluate this
particular model in comparison with others, It is to
uwse the model as a vehicle for demonstrating the
power of DEB meodels in rclating phenomena at dif-
ferent levels of organizations.

The physiological and physico-chemical rationale
for the x-rule mode! assumptions have been exten-
sively discussed elsewhere (Kooijman 1993, 2000),
Figurel shows the primary energy fluxes, and
Tables | and 2 list the assumptions and some equa-
tions. Input of enerpy to an organism involves trans-
fer of material across surfaces (gut wall, membranes
of cells and organelles, etc.), before it is spent on
volume-dependent processes, such as growth and
maintenance (assumptions 1 and 3). As a result,
many physiological rates can be expressed as a
weighted sum of an area and volume measure; see
for example the equations for reproduction and
respiration in Table2 and Fig.2. An orpanism aims
at a stahle internal environment (homeostasis:

growth

STRUCTURE
Ssomatic maintenance . METABOLIC

-

RATE

maturily maintenance  METABOLIC
" WORK

GONADS

reproduction
maturation

Fig,1. An example of 4 DEB model (the w-rule model of Kooijman 1993). An organism ingests food at a rate dependent
on its size and the food density. Energy is extracted from food and added to the reserves. The rate at which energy becomes
uvaituble to the organism depends on its size and stored energy density. Somatic maintenance has absolute priority for
energy. By defauit, a fixed proportion & of the available energy is atlocated to somatic maintenance and growth combined,
und the remaining I-« to either maturation (for embryos and juveniles) or to reproduction and maturity maintenance (for
adulis). Growth ceases when this fixed fraction » just meets somatic maintenance demands. Then, the organism may still
reproduce, provided that energy made available exceeds the requirements for somatic and maturity maintenance. (See

Table | for assumptions and Table 2 for equations.}
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Table 1. Assurnptions of the x-rule DEB model. A mechanistic basis for these assumptions is presented in Kooijman 2000)

|. Food uptake is propartional to surface area und depends hyperbolically on food density.
2. The dynamics of energy density in reserves is a first order process, with a rate that is inversely proportional 10 the
volumetric Jength.
3. A fixed fraction of the energy flowing out of the reserves is used for somatic maintenance plus growth (i.e. inerease in
structural biomass), the rest for muturity maintenance plus maturation or repraduction. This allocation rule is called the
~-rule.
4. The chemical compositions of structure and reserves ure constant. Since the amount of reserves can change relative to
the amount of structurul biomass, the chemical composition of an individual may chunge. The following ate constant:

(i) the conversion efficiency of feod into energy;

(i1) the cost to maintain 4 unit of structural biovolume;

(ili} the cost to maintain the ucquired level of maturity.
5. Hazard rate (rate of ageing) is proportional 1o the uccumulated ‘damage’. In addition:

(1) damage production is proportional to the changed DNA;

(ii} DNA change is proportional to respiration,
6. If the investment into maturation exceeds a given threshold value, the orgunism changes its stage, i.e. it switches from
the embryonic stage to the juvenile stage by initiating the feeding process, or from the juvenile stage to the adul: stage by
ceasing maturation and initiating the production of gametes {eggs, sperm). Asexually reproducing microorganisms behave
as juveniles.
7. The initial conditions are:

(1) 1mtial structural biomass is negligibly small;

{ii} reserve density at hatching equals that of mother at egg taying;

{ii) initial damage is negligibly small.

Table 2. Equutions of the s-rule model for a growing organistn. Dynamics of an organism experiencing food stress and of
non-feeding life stages are detailed in Koeijman (1993)Q1

L: length (a cubic root of structural biovolume)
[£]): stored energy density {i.e. stored energy per cubed length)

State variables

Envircnment X: food density
Assimilat im} L2 fif = =
ssimilatien {dm} LT X+ x
Dynamics E =7 [EV/Ewm] — Lafbom — L L
ot 3 8= [EN[En]
AE] _ (Al (, [E]
dt L {En]
Huzard rate Wy = pul™ [ L3y — L} + i [} L oddna )t
. EVIE,
Reproductive rate BN o« [—Lﬂ%(l«.l} +1Yh-1)
Primury parameters g +EVEn]
K saturation cogfficient
{ At maximum assimilation rate per surface area
[E_m] MaXImum storage energy
[M] maintenance energy per unit size per unit time
[G] energy ¢os1s for a unit increase in size
L, length at puberty
Ly heating length {endotherms only)
K fraction of utilized energy spent on maintenance and growth
B ageing acceleration
H population growth rate
Compound parameters
¥ energy conductance: (B
Hi maintenunce rate coefficient: G
. . 1G]
t e
z investment ratio w[En]
L maximum length: M = —L
- [M] rhg
Ie reserve length: % = gl
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Fig. 2. The x-rule model makes goed predictions about feeding, respirution, growth and reproduction of Daphnia magna in
a constunt environment. The curves represent model fits 10 experimental results. The expressions above the graphs were
derived from the rules in Table 1 and equations in Table2. The estimated parameters are: von Bertalanffy growth rate y
(0-115 duy "), ultimate length L., (436 mm), reserve-length Lo (1-8 mm), length at puberty L, (1-8 mm), maintenance rate
coefficient [m (118 duy™"). Note that the reserve-length occurs in several expressions.

assumptions 2 and 4), and somatic and repreductive
tissues compete for available energy (assumption 3).

Mathematically, the dynamics of a heterotrophic
system are determined by two ordinary differential
equations describing changes in siz¢ and density of
reserves. Once these equations have been solved,
many other quantities can bc caleulated. These
include such obvious targets as reproductive output
(see Table 2}, but also ones that are less conspicu-
ously part of the modelling framework, such as the
development time of egps, body composition in
terms of macromolecules, and mass fluxes, eg.
respiration, disposal of nitrogen waste products and
evaporation of water (Kooijman 1993}, These latter
calculations do not require new state variables, but
do require information on the swoichiometry of the
transformations being considered.

The basic model has one substrate (‘food’) and
one type of reserve, It can be generalized in a sys-
tematic way to describe multiple substrates and

28

many types of reserves (Kooijman 2000). The one-
substrate, one-reserve model described above then
emerges as a limiting case in two situations: if only
one substrate is limiting, or if the relative abundance
of substrate types is constant and turnover times of
the various reserves have the same value. The multi-
substrate generalizations are needed to describe the
dynamics of autotrophic systems, since plants and
algae experiencing a nutrient limitation maintain, in
uddition to energy reserves, stocks of nutrients. A
description of their dynamics thus involves assump-
tions about these additional pools of nutrients (Zon-
neveld 1996; Zonneveld 1998a; Zonneveld 1998b;
Kooijman 2000).

MODEL TESTING

DEB models make testable predictions about the
performance of organisms in any given environ-
ment, and thereby help identify mechanisms respon-
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sible for observed patterns in experimental data. For
example, the r-rule model predicts that growth
under constant environmental conditions is of the
von Bertalanffy type, and that an adult may con-
tinue 1o reproduce long after growth has ceased.
These qualitative features are observed in studies of
many organisms, and constitute strong prima fucie
evidence that the model is capturing some essential,
and very general, features of the dynamics of these
individuals.

Direct testing of the core assumptions on energy
allocation and homeostasis is remarkably difficult.
Ideally, we require data on a large number of com-
binations of output variables and environment; this
is seldom uavailable. Access to data from dynami-
cally varying environments is particularly mportant,
smee many model predictions regarding individual
performance in an unchanging environment are
insensitive to some of the assumptions. For exam-
ple, experiments in which organisms grown in one
food environment are transferred to higher or lower
food are powerful (Kooijman 1986; Gurney e al.
1990; McCauley ef /. 1990). A more fundamental
difficulty is that the key stale variables relate in
subtle ways to experimental data. Size in a DEB
model is really a measure of energy allocated to
structural biomass, and energy stored in reserves is
an experimentally clusive entity. Links between
these state wvariables and real size and storage
require new assumptions. Body mass in a DEB
model combines the structural part and the energy
reserves, and does not yield a direct measurement of
either, although for micro-organisms, changes in
body mass composition with population growth rate
can be used to identify the contribution of structural
bicmass and reserves to each chemical compound
(Muller 1994; Hanegraaf 1997; P.P.F. Hanepraaf
ef al., unpublished}. Similarly, assumptions about
energy flows are not directly testable, as many flows
{e.g. the "utihzation® flow in Fig. 1} are¢ nol measur-
able.

Many model tests are thus indirect. Parameters
are eslimated independently from data on (very) dif-
ferent physiological processes and checked for con-
sistency. For example, the maintenance rate
coefficient, a compound paramcter defined as the
ratio of the volume-specific maintenance and growth
costs, has been estimated not only from data on
weight loss during starvation, but also from data on
respiration ontogeny during the embryonic period,
Even data on the survival probability as a function
of age give access te the maintenance rate parameter
for individuals in laboratory conditions where the
physiclogically based ‘hazard rate’ in Table2 can be
assumed to be a major component of mortality {see
Koeijman (1993} p. 109 for examples of such calcu-
lations for the pond smail Lymraca stagnalis). As
another example, data on respiration vs. size and on
reproduction vs. age both yield estimates of the
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reserve-length, a parameter compounded from four
primary parameters (see Table 2). Figure 2 illustrates
that the same value for the reserve-length is appro-
priate in describing respiration and reproduction in
the waterflen Daphnia magna, The figure also shows
that growth and feeding are well described by the k-
rule model, using parameters consistent with the
previous fits. :

In the search for mechanisms, deviations from
model predictions are at Jeast as instructive as data
that support it. For example, experiments on time
to starvation in the pond snail Lymnaca stugnalis
have shown that the length of day influences the
allocation of energy te reproduction (Zonneveld
1992). This result has led te a modified version of
the model, demonstrating that particular model ele-
ments may vary in some situations without destroy-
ing the basic integrity of the imodel structure
(chapter 4 in Kocijman 1993). As another example,
although the Daphniz data in Fig.2 are consistent
with the k-rule model, many other published experi-
ments on growth of individual Daphnic show a
long-term upward trend in length that is not pre-
dicted by the model (Fig. | of McCauley ef al. 1990;
Noonburg er al. 1998). Prolonged growth may be
the result of changing the priorities of energy alloca-
tton with age or may reflect slow adaptations that
involve changes in other model parameters.

The fact that a large body of data is well
described by the x-rule model supports the view that
although organisms are complex and differ greatly
from each other, their basic features can be
described using a common modelling framework. A
challenge for rival models is to achieve similar width
of coverage. A more demanding challenge is to
design experiments capable of discriminating among
rival DEB models, as well as to delineate the cir-
cumstances where predictions are insensitive to the
choice of DEB model-for ¢example Ross & Nisbet
{1990} showed that a modified form of the x-rule
model and a net production model give equally
good fits to data of growth of the marine mussel
Mytitus edulis. This last issue affects strategy for
DEB applications; for example, should a worker
analysing the results of toxicity tests {see later sec-
tion} be concerned about the choice of DEB model
vsed in that work?

Linking Ievels of biological organization

The dynamics of individuals depend on cellular pro-
cesses which, in turn, depend on molecular pro-
cesses. Similarly, the cumulative performance of a
large number of individuals determines the dynamics
of a population and, ulttmately, the dynamics of
ecosystems. This section gives examples of how
DEB models link the varicus levels of biological
organization jn such a way that the dynamics at dif-
ferent levels of organization are sell-consistent.
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MOLECULAR PROCESSES

Dynamics at the individual leve] constrain processes
at the melecular level. For example, a bacterium
may increase the synthesis rates of macromolecules
only if it has previously taken up sufficient nutrients
and energy. Since uptake rates depend on size, so
must synthesis rates. However, the relationship
between rates of uptake and synthesis is indirect
because of the role played by intermediate pools of
mtracellular metabolites. The link can be under-
stood using the r-rule model, through assumptions
about the composition of structure and reserves (see
Takle 1). For example, last-growing cells of Escheri-
chia coli require rapid protein synthesis, and contain
about 10 times as many ribosomes 1s cells in a poor
environment (Bremer & Dennis 1987). The intracel-
lular concentration of RNA, which is for the most
part nibosomal RNA, thus increases drastically
when food conditions improve. In the x-rule model,
a higher food level leads 10 an increase in the den-
sity of the energy reserves. Consequently a major
part of ribosomal RNA may be interpreted as
‘reserves’, playing a key role in balancing the acqui-
sition and utifization of energy in the cell. With this
interpretation, the s-rule model predicts relation-
ships between the cell division rate, the (urn-over
rate of ribosomes, and the mean clongation rate, i.e,
the ratc at which ribosomes proceed along a strand
of messenger RNA (Kooijman ¢t al. 1991). These
predictions correspond well with  experimental
results, see Fig. 3.

DEB models also provide an explanation for spe-
cialization in bacteria. Individuals that discard unne-
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cessary genomic information are predicted to have a
selective advantage over individuals from the parent
strain (Stouthamer & Kooijman 1993). The argu-
ment uses two additional assumptions (cf. Donachie
& Robinson 1987): a cell must achieve a certain cri-
tical size for DNA replication to start, and the
duplication of DNA proceeds at a fixed rate. Then,
cells with a smaller genome will divide at a smaller
size, causing the mean cell size in a population to
decrease. In non-filamentous organisms, the meun
surface area to volume ratio then increases. which
leads to a higher individual growth rate, a shorter
division interval and, consequently, a higher popula-
tion growth rate. In circumstances where natural
selection acts to maximize population growth rate,
cells with a large genome then have a selective disad-
vantage, even though the direct costs involved in
maintaining and duplicating unnecessary DNA are
negligibly low. A similar argument may be used to
cxplain why some micro-organisms store the infor-
mation on {large parts of) some metabolic routes on
megaplasmids. The time to duplicate the genomic
information decreases with the number of arigins of
replication, causing the mean cell size to decrease
and the popuiation growth rate to increase.

POPULATION DYNAMICS

Solution of DEB model equations provides hife-his-
tory information, i.e. a schedule for reproductive
output and one compenent of mortality, for organ-
jsms experiencing any piven environment. This pro-
vides an opening to population dynamics,

Elon. rate/elon. rate at pg,

¢ 0.2 0.4 0.6 o8 1
H/Mmax

Fig.3. The s-rule model defines how the mass of structure and reserves change as & function of food conditions. This deter-
mines how principal biochemicul components are partitioned between structure and reserves, and thersfore how the cancen-
trations of these components change as a function of the population growth rate, g. In {a) this model expectation is fitted
with measured RNA concentrutions in Escherichia coli using three free parameters (data from Koch 1970). This partitioning
also implies how the activity of principal biochemical components relates to the growth rate. In {b) the model fit of the
mean elongation rate of ribosomes in Escherichia cofi is shown using two free parameters (data from Bremer & Dennis

1987). See pp. 250-252 of Kooijman (1993} for details.
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In a constant environment 2 population will ulti-
mately grow exponentiatly; and it 1s possible to cal-
culate the rate of exponential growth in any given
environment from generalizations of the Lotka
equation. Such calculations motivated one of the
earliest applications of DEB theory to ecotoxicology
(Kooijman & Metz 1984}, A population at equili-
brium neither grows nor declines, implying that the
uverage lifetime reproductive output, Ry, per indivi-
dual in the population is one. If $(r) deoetcs the
proportional of a cohort that survive to age f, then

Ry = fﬁ(l)S{I)dﬂ‘

Table 2 shows that the reproductive rate (i} can
be obtained from the DEB model solutions which,
in turn, depend on the food density in the environ-
ment (represented by the scaled functional
response). Survival in most pepulations is deler-
mined in part by the hazard rate which s also
obtained from the DEB model, but also by other
factors (e.g. predation, parasitism) that are unre-
luted to energetics. Equation | can be solved to
determine the food density at which the population
will be in equilibrium. We can then calculate any
demographic properties of a pepulation at equili-
brium (Gurney cr af. [996; de Roos e al. 1997),
including time to reproductive maturity, mean
fecundity of adults, and the ratio of adults to juve-
niles. '

To move beyond representations of stationury, or
exponentially growing, populations requires struc-
tured population models, These modeis relate the
complete dynamics of a population to the dynamics
of individual organisms and, in general, involve par-
tial differential equations or integral equations (de
Roos 1997). The equations simplify to a set of
ordinary differential equations when all cnergy
fluxes depend in u similar way on size (Kooijman
1993; Nisbet er ai. 1997). This simp!Hication is valid
for Alamentous organisms, approximately valid for
micro-otganisms and may be a reasonable approxi-
mation for many other organisms (Nisbet et af.
1997).

With the x-rule model, further simplifications lead
to equations that may still essentially capture the
behaviour of a system and, in quite a few cases, are
analogous to well-known modcl formulations, If
fluctuations in energy reserves are ignored, the
ordinary differential equations are eguivalent to the
Lotka-Volterra-like, biomass-based, dynamic equa-
tions widely used in modelling aquatic populations.
Such biomass equations have been shown to yield
predictions in good agreement with laboratory stu-
dies of zooplankton populations {Nisbet er af. 1997,
They have also been successfully used to model
competition among zooplankters in fluctnating
cnvirenments (McCauley ¢f «f. 1996, Nisbet ef ai,

egn |
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1997), and to study the stability of natural plankton
assemblages (Murdoch ef al. 1998). Similar biomass-
based equations are widely used in microbiology;
for example, the model of Marr and Pirt {(Marr ¢t af.
1962; Pirt 1963), This model without reserve
dynamics simplifies further 1o the formulation of
Monod (1942) when maintenance requirements are
ignored. If, conversely, reserve dynamics are consid-
ered but maintenance requirements are omitted, the
Marr—Pirt model is consistent with the formulation
of Droop {1973). The DEB model is not only a
close relative of this highly successful model; it also
provides a mechanistic explanation of it,

The power of the DEB approach becomes really
apparent in situations where it is not legitimate to
ncglect fluctuations in reserve density. Energy
reserves act as a bufler between an organism’s
demand and a potentially variable environment and
may therefore strongly affect the pattern of popula-
lion fluctuations (Kool & Kooijman 1994a; Kouoi &
Kocijman 1994b; Kooi & Kooijman 1997; Kooi
el al. 1999). Figure4 demonstrates the importance
of reserves for a food chatn with substrate, bacteria
and slime moulds. The quality of the fit by the »-
rule model is striking when compared with previous
attempts that did not consider reserve dynamics
(Tsuchiya et af. 1972; Bazin er al. 1974; Bazin &
Saunders 1979). Figure4 tllustrates this comparison
for one of the traditional models, the Monod model.
This failure of traditional medels indeed led to the
controversial speculation that feeding rates are
determined by the level of resource per consumer
rather than by resource level itself, an idea that ecol-
ogists revisit intermittently as in the recent explosion
of interest in ‘ratio dependence’ {Arditi & Ginzburg
1989; Arditi et af. 1991). As Fig. 4 shows, however,
the feeding rate may rcasonably be assumed to
depend directly on the resource level, provided the
importance of energy reserves in a variable environ-
ment is recopnized.

ECOSYSTEM DYNAMICS

There is a long tradition of measurement and mod-
elling of encrgy flows in ecosystems. DEB theory
may contribute to this effort. In ecosystem model-
ling, the state variables relate to energy and elemen-
tal matter within functional groups of populations,
such as primary preducers and herbivores. As with
population models, simplification to a system of
ordinary differential equations is possible when feed-
ing and maintenance rates scale in identical manner
with body size (Kooijman & Nisbet 2000}, In eco-
systems, such scaling may arise for two very differ-
ent reasons, First, il a single species dominates the
functional group, the simplifications described in the
section on population dynamics may be applicable.
The second possibility is that a functienal group
contains a number of species with the overall spec-
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Fig.4. Fits of the x-rule modei (solid line) and Moned model (dotted tine) to data from a food chain in a continuous ¢ul-
ture. The food chain consists of glucose Xy, the bacterium Escherichia coli X; und the slime mold Dictyosielium discoidewm
X,. The variables ¢; and ¢ represent sciled measures of reserve density in the bacteria and slime mould, respectively. The
dilution rate p=0-064 h™" and glucose concentration in the feed X, =1 mg ml™'.

The x-rule parameter values and equations are as follows.
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trum of sizes much larger than the size range
spanned by any one specics. The feeding and assimi-
lation rates of an individual are proportional (o sur-
lace arca (see Table 1), but the theory of body-size
relationships discussed in the next section predicts
that the constants of proportionality depend linearly
on the maximum body length an organism can
attamn. Thus, the feeding rate of 4 functional group
of organisms scales as a volume. If maintenance rate
is still assumed to be proportional to volume, then a
functional group both feeds and expends energy on

32

maintenance at rates proportional 1o the total
volume it occupies.

The full potential of DEB models for ecosystem
modelling is unknown, since the only examples
known to the authors do not explicitly recognize
reserves. Yel, there are models of flow of energy and
elements that make a convincing case that ecosys-
tems do truly have dynamics. The state of the art is
well illustrated by models of carbon and nitrogen
dynamics in three ford ecosystems (Scottish sea
lochs) (Ross er af, 1993a; Ross et af. 1993b; Ross
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ef al. 1994; Gurney & Nisbet 1998) The model sub-
divides the loch into compartments, with water flow
between compartments. The [jord exchanges water
with the open ocean. The food chain has three com-
ponents: primary producers, herbivores (predomi-
nantly copepods), and camivores {predominanily
jellytish). Figure 5 compares observed concentrations
of phytoplankton and of dissolved inorganic nitro-
gen with predictions from a medel of this sort.
Model parameters are estimated cither from inde-
pendent data, or by fitting using only data from one
loch. The trajectories for the other lochs are then
well predicted on the assumption that the biological
mteractions are unchanged, and that only differ-
ences between the three systems lie in the values
taken by hydrodynamic parameters.

Life histories and body-size relationships

DEB model assumptions also have implications for
inrerspecific comparisons of physiological rates. In
DEB theory intraspecific differences in physiological
rates derive solely from different values of state vari-
ables. By contrast, individuals of different species
also have different parameter values: an adult mouse

60 Phytoplankton
Loch Creran
mE 40 .
d
ad)
g 20 ®
£
1] m—&é i
Loch Etive
“’g 40 .
% /
E 20 i .
Plp, iy
U _o_.a{ i °
Loch Airdbhair
Hﬁ_ 20
z
[=1)]
£ 10 \d\Q
PG .’/;H_H\\\.
0 ?_ocoo © 0‘957-

Jan Mar May Jul Sep Nov

Final Study Report — Nisbet, Muller

and juvenile rat of the same size grow and reproduce
at entirely different rates, despite their similarity in
size. Kooijman (1988, 1993; chapter 6) showed that
the assumptions in Table ! tmply that parameter
values wilt tend to co-vary among species, since the
maximum body kength, L, is a simple function of
model parameters.

Parameters can be classified as being either “inten-
sive’ or ‘extensive’. An intensive parameter charac-
terizes molecular processes, which depend on
densities, Because densities do not scale with size,
interspecific changes in the values of an intensive
parameter do not vary among species in a systematic
way. Extensive parameters, by contrast, relate to
physical design, and can be shown to scale with
maximum bedy length. Since most physiological
quantities, including L., itself, are functions of
intensive and extensive purameters, it is possible to
represent these quantilies as functions of L, and
thereby derive body size scaling relations,

Using this line of reasoning, the von Bertalanffy
growth rate at high food levels turns out to be
approximately inversely propertional to maximum
length. Figure 6a tests this prediction with data from
a wide variety of organisms, whose maximum sizes
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Fig.5, Compurison of the annual eycle in phytoplankton and in disolved inorganic nitrogen (DIN) predicted by the sea-
loch medel in Gurney & Nisbet (1998) with the observed annual cycles in the three Scottish sea-lochs. The ‘biologicul® para-
meters take the sume values in each system; the hydrodynamic parameters differ. Reproduced with permission of W.S.C.

Gurney.
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Fig.6. The DEB model predicts interspecific body size
scaling relationships. {#) The scaling of the von Bertalanfly
growth rate as a function of the ultimate size of birds (7},
mammuals ([7), reptiles and amphibians (A), fish (), crus-
taceans (x), molluses (4), other species (¢) and model
expectatlion {line). Data have been normalized to a body
temperiature of 257C using the Arrhenius reluttonship (see
Kooijman 2000, p. 282 lor Turther details). (b)Y The meta-
bolic rate a3 a function of body weight of unicellulars (O,
ar 207C), ectotherms (@, at 20°C) and endotherms (%, at
39°C). The metabalic rate is proportional to the respiration
rate. The slope of the upper and lower line represent allo-
metric scalings with body weight to the power 2/3 und 1,
respectively. Other curves represent medel fits to the data
{see Kooijman 2000, p. 272).

cover a range of more than four orders of magni-
tude. The environmental conditions at which many
of these dala were collected are unknown and may
explain part of the scatter in the data, Also. variabil-
ity in the life-history parameter x, a constituent of
the von Bertalanffy growth rate, may have caused
some scatter. However, the trend is consistent with
the #x-rule model,
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The interspecific variation of the weight-specific
respiration rate can be derived along similar lines,
In ectothermic species, it is predicted to decrease as
body weight increases, because reserves (which are
assumed not have maintenance requirements) then
represent an increasing proportion of the organism’s
weight. Total respiration rate turns out to be a lin-
ear combination of terms proportional to the maxi-
mum surface area and the maximum volume of a
species. This apparently contrasts with the many
empirical studies that describe the relationship allo-
metrically as maximum body velume raised to some
power. However, graphs of both relationships are
almost identical if the exponent in the allometric
relationship has a value in the range 0-66-1.0, the
maximum span consistent with DEB thecry. This
range contains the popularly quoeted value of 0075 as
well as mest empirical estmates for groups of
organisms {(Calder 1984; West ¢r af. 1997). Figure 6b
demonstrates the ability of DEB theory to describe
the scaling of respiration rate with body size in uni-
cellulars, ectotherms and endotherms.

Coincidentally, the x-rule model predicts that
respiration rate scales with size in a broadly simitar
way intraspecifically, although, as explained above,
the mechanisms involved are different from those
generating the interspecific relationships. Individuals
of the same species differ in values of the state vari-
ables, not in parameter vulues. Because small indivi-
duals invest relatively more energy in growth than
large ones, the respiration rate is a linear combina-
tion of the actual surface arca and volume of an
organism, This relationship is again often close to
the cmpirical result that respiration rates are pro-
portional to volume to the power 0.75.

Not every parameter is predicted to vary systema-
tically from species to species. Life-history para-
meters represeniing, for example, stratepic choices
about energy ailocation (¢.g. the parameter «) and
the critical size for chanping a life stage {Lp), are
likely to be adaptive. The theory only predicts inter-
specific variations in paramecters representing phy-
siological and bicchemical processes,

As noted earlier, deviations from the predictions
of mechanistic models can be most instructive.
When a particular species deviates from expected
interspecific patterns, we can look for the responsi-
ble parameters, and oblain a better understanding
of why this species differs from others. For example,
tube noses incubate their eggs for a long time in
comparisen with other similarly sized birds. Also,
this species has relatively large eggs and large
hatchlings. However, when tlic incubation time is
corrected for egg size, those differences disappear
(see p. 232 in Kooijman 1993). Understanding their
long incubation time thus involves their relatively
lurge egg size. Further analysis reveals that if a spe-
cies increases egg size, it will have a shorter chick
stage, with this reduction exceeding the increase in
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incubation time. As a result, the breeding season
becomes shorter, which makes ecological sense [or
open ocean birds.

In summary, DEB models can be used to derive
interspecific scaling relationships between physiolo-
gical attributes and body size. The derivation does
not invoke any optimization arguments. Here the
DEB approach contrasts with other theories of
metabolic scaling, such as the recent model of West
er af. (1997) that assumes minimization of the energy
required to transport metabolites in an isomorphic,
space-filling, fractally branching tube system. Child-
ress & Somero (1990) take an intermediate position
regarding the role of cvolution, in which they con-
trast the tight scaling of aerobic metabolic power in
fish, with high, size-dependent variahility in anaerc-
bic power (a significant compenent to total output
in skeletal muscle) and argue that natural selection
played a major role only in determining the strength
of the anaerobic contribution. An impertant chal-
lenge for theorists and experimentalists is to identify
ways of testing these theories.

Applications

Mechanistic models can be of great value in applied
science, and offer many benefits over pure empiri-
cism. Consider, for instance, the responses of
laboratery animals in routine toxicity tests. The
longer the experiment lasts and the smaller the
orgapisms are, the more drastic the observed
response will be. The observed effects thus depend
on experimental design, a fact that obviously com-
plicates the formulation of toxicological standards.
We illustrate below that the dependence of results
on time and size can be understood with DEB mod-
els; several formulations were, in fact, developed to
address this kind of problem (Hallam e af. 198%;
Kooijman & Bedaux 1996a). We also  briefly
describe how DEB theory is used in biotechnologi-
cal problems.

Toxic compounds may affect growth, reproduc-
tive output and survival, In a DEB model, a descrip-
tion of toxic effects is based on mechanisms that
identify the target paramecters and quantify the
effects in terms of the body burden of toxicant. The
body burden of toxicant depends on the organism’s
abilities to metabolize toxicants and on uptake and
elimination characteristics. These processes depend,
in turn, on attributes of an organism, such as the
size and lipid content, that are described by the
model {Lassiter & Hallam 1988; Kooijman & Haren
1990), Toxic elffect models based on those tightly
related principles that satisfactorily describe experi-
mental data covering a wide range of toxicants, spe-
cies and DEB-defined processes (Kocijman &
Bedaux 1996b; Kooijman & Bedaux 1996c; Muller
& Nisbet, unpublished).
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One advantage of an approach using DEB models
is that the parameters describing toxicological effects
represent the organism’s sensitivity te a compound,
and are independent of experimental protocol (e.g.
exposure time), This does not hold for classic mea-
sures, such as the LC50 and EC50. The no-effect
concentration, which defines the highest concentra-
tion that will never cause an effect, may be used as a
model parameter. This quantity is more relevant
than the no-observed-effect concentration, a mea-
sure that is often used in risk assessment studies, but
which has serious methodological and statistical
problems (Kooijman & Bedaux 1996d). Another
benefit from using a DEB model is that the toxicity
of & compound can be related to its physico-chemi-
cal properties, such as degree of ionization and fat
solubility. In addition to physico-chemical data, a
description of a class of similarly acting compounds
only requires a proportionality factor and toxicole-
gical data on 2 single member (Kooijman & Bedaux
1996a).

In biotechnology, DEB models aid the design and
aperation of production and treatment plants. DEB
modeis have been used to describe the formation
rates of biomass, fermentation products, such as
ethanol, and secondary products, such as penicillin
{Hanegraaf 1997). They are therefore useful in deriv-
ing the economically optimal conditions for hiotech-
nological production, Likewise, DEB models are
involved in the desigh and operation of sewage
treatment plants, which produce much bacterial bio-
mass (sludge), a product that needs to be processed
at considerable costs, Since waste waler contains
food for bacteria, sludge production is minimized by
increasing the sludge content of the treatment plant
(Muller ef a/. 1995). Sludge production is also mini-
mized by increasing the abundance of bacterial gra-
zers (Ratsak ef al. 1993; Ratsak er af. 1994; Ratsak
er al. 1994),

Future challenges: DEB models in evolutionary
time

Throughout this article we have identified areas of
DEB theory that are ripe for future research. How-
ever, probably the most pressing challenge is to
relate DEB models to the mainstream of evolution-
ary theory. To date, the most powerful contribution
of DEB models has been to identify body-size scal-
ing relationships that may be understoed without
appeal to optimization, or to other evolutionary
concepts. There remain many questions requiring
consideration of changes over evolutionary time.
Here we highhight two,

First, we do not have a good understanding of
the patterns of interspecific variation in those DEB
parameters that describe adaptive traits, for example
%, which quantifies partitioning of energy between
growth and reproduction, or the critical parameters
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that determine the timing of transitions between life
stages. The natural (and truditional) starting point
for such a study is to investigate how a change in a
parameter value affects the expected lifetime repro-
ductive output of an individual in a population at
equilibrium (Ry) (e.g. Sibly & Calow 1986 and refer-
ences therein; Stearns & Hoekstra 2000 and refer-
ences therein). By using a DEB-based formula for
Ry (see equation 1), we ensure that energetic-based
trade-offs are incorporated. When an individual
with a modified parameter value appears in a popu-
lation at equilibrium, it will be favoured by selection
if it is able to replace itself at a lower food density
than the current equilibrium density, !n other
words, a change in parameter values is advanta-
geous when Ry is larger than one at the current food
conditions. Very few such calculations have been
atternpted {¢.g. chapter 4 in Gurney & Nisbet [998;
Lika & Nisbet 2000).

However, a much more fundamental challenge is
to predict a priori the appropriate strategy for allo-
cation of energy in organisms that exhibit simuita-
neous conunitment (o growth and reproduction.
Simple models of energy allocation suggest that in a
constant environment, the optimal stratepy for an
individual is the 'bang-bang’ option of committing
100% of net production (assimilation less mainte-
nunce) 1o growth until a certain age, and thereafter
100% to reproduction {(e.g. Bulmer 1994) While
consistent with the life histories of some organisms,
the bang-bang strategy is not followed by the many
arganisms that simultancously grow and reproduce,
and which motivated the development of the x-rule
model. An analysis of allocation strategies m the lat-
ter model showed that there arc circumstances
where bang-bang allocation is nferior to a constant-
fraction allocation to reproduction (L. Lika &
S.AL.M. Kooijman, unpublished). This is because
the x-rule model recognizes costs and trade-offs in
juvenile development that are absent in the simpler
models. The most commeonly invoked explanation
for the existence of mixed allocation strategies is
bet-hedging in a spatially or temporally variable
environment (Cohen 1966; King & Roughgarden
1982a; King & Roughparden 1982b; Bulmer 1994).
Thus, DEB modelling reopens the debate on
whether or not mixed strategies are an evolutionary
response to uncertain environments,
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Abstract. We formulate a Dynamic Energy Budget (DEB) model for the growth and repro-
duction of individual organisms based on partitioning of net production (i.e. energy acquisi-
tion rate minus maintenance rate} between growth and energy reserves. Reproduction uses
energy from reserves. The model describes both feeding and non-feeding stages, and hence
is applicable to embryos (which neither feed nor reproduce), juveniles (which feed but do
not reproduce), and adults (which commenly both feed and reproduce). Embryonic growth
can have two forms depending on the assumptions for acquisition of energy from yolk. By
default, when the energy acquisition rate exceeds the maintenance rate, a fixed proportion
of the resulting ret production is spent on growth (increase in structural biomass), and the
remaining portion is channelled to the reserves. Feeding organisms, however, modulate their
allocation of net production energy in response to their total energy content {energy in the
reserves plus energy bounded to structural biomass). In variable food environment an or-
ganism alternates between periods of growth, no-growth, and balanced-growth. In the latter
case the organism adopts an allocation strategy that keeps its total energy constant. Under
constant environmental conditions, the growth of a juvenile is always of von Bertalanffy
type. Depending on the values of model parameters there are two long-time possibilities for
adults: () von Bertalanffy growth accompanied by reproduction at a rate that approaches
zero as the organism approaches asymptotic size, or (b} abrupt cessation of growth at some
finite time, following which, the rate of reproduction is constant. We illustrate the model’s
applicability in life history theory by studying the optimum values of the energy allocation
parameters for constant environment and for each of the dynamic regimes described above,

1. Introduction

Dynamic Energy Budget (DEB) models describe the rates at which an individual
arganism acquires energy and utilizes it for physiological processes related to main-
tenance, growth and reproduction. DEB models are based on simple assumptions
about the rates at which the organism acquires energy from its environment, and
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rules that describe how acquired energy is partitioned among maintenance, growth
and reproduction. The fundamental hypothesis underlying a DEB model is that a
set of physiological state variables (age, size, energy reserves, etc.) together with
environmental variables {food density, temperature, etc.) fully determine the life
history of individuals.

DEB models constitute a basis for developing physiological structured models
[16,30] which aim to relate phenomena at the population level to the physiology
of individuals. They are also used for applications in toxicology [7,12-14,17] and
biotechnology [24-26). DEB models are appropriate for life history studies since
individual organisms are widely recognized as the units on which natural selection
operates [2].

A wide variety of DEB model formulations have been developed, ranging from
general, parameter-sparse models [11] to models which include more biological
detail and may be taxon-specific and parameter-rich [4,8-10]. How much detail is
relevant depends on the objective of any particular study, for example, a parameter
sparse medel is desirable for interspecies comparisons.

Most DEB models in the literature fall into one of two families, which we call net
assimilatior and net production models [6,20,21]. The two groups of models differ
mainly in their assumptions concerning allocation of energy to reproduction. Nisbet
et al. [20] show that the assumptions concerning energy allocation may strongly
influence predictions on toxicant response, and Gurney et al. {5] found that different
energy allocation strategies result in different behavior at the population level.

The most complete body of theory to date for DEB models exists for a net
assimilation model developed by Kooijman [11]. He formulated a single, param-
eter-sparse, mechanistic model to describe the energetics of embryos, juveniles
and aduits. Species differ only in their parameter values. Net production models,
although they have been more widely used [1,8-10,22, 28], have been formulated
only for juveniles and adults (feeding stages). The theory in this paper was moti-
vated by the need to formulate a net production model in a way that covers feeding
and non feeding stages of an organism, so that further testing of the two energy
allocation strategies can be made.

Our objective is to formulate and analyze a mathematically consistent, represen-
tation of the energetics of embryos, juveniles and adults, based on a net production
model. The model is formulated and its well-posedness is analyzed in section 2.
We are particularly interested in the possibility of abrupt changes in qualitative
dynamics arising from changes in model parameters; this is studied in section 3. In
section 4, we illustrate the use of the model in life history theory.

2. Mathematical model

Our DEB model is based on simple, mechanistic rules for the processes of the ener-
gy uptake and use by individual organisms. The mode) uses differential equations
to describe the rates at which the organism acquires energy from its environment
and utilizes it for maintenance growth and reproduction. These rates depend on
the state of the organism and its environment. The model distinguishes three life
stages: embryos, juveniles, and adults. Embryos differ from juveniles and adults in
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the way they acquire energy; juveniles and adults acquire energy from the ambient
food, whereas an embryo absorbs energy from the yolk of the egg, which is taken to
be its ‘environment’. Moreover, embryos and juveniles do not reproduce, whereas
adults can reproduce. We develop the model for organisms that are isomorphic
(i.e. they do not change shape during growth), heterotrophic (i.e. they use organic
material as their source of energy), and ectothermic (i.e. they do not regulate their
body temperature).

The state of the organism ts described by two variables; volume of structural
biomass V, mainly in the form of proteins (hereafter refer to as biovolume), and
total reserves of stored energy E, commonly a combination of carbohydrates, lip-
ids and proteins. The use of biovolume as a state variable allows description of
size related measurements of the organism. For instance, for isomorphic organ-
isms length is proportional to V!/3, surface area is proportional to V23, weight is
proportional to V, etc. Details on the relationships between size measures may be
found in Kooijman {11].

The energy flows within the organism are schematically depicted in Fig. 1. All
meodel variables and parameters are listed in Table 1. All the parameters assume
positive values. The key assumption of the model is that maintenance, i.e. the en-
ergy required by processes necessary to keep the organism alive (e.g. turnover of
structural body proteins, production of scales etc.), is debited directly from the
energy acquired by the organism. By default, when the energy acquisition rate A
exceeds the maintenance rate M, a fixed proportion « of the resulting net production
A — M is spent on growth (increase in biovolume), the remaining portion, | — o, is
channelled to the reserves. Feeding organisms, however, modulate their allocation
of net production energy in response to their total energy content (energy in the
reserves plus energy bounded to structural biomass). Cessation of growth occurs
when there is a decrease in organism’s energetic value, Initiation of growth occurs
when the current energetic state exceeds its maximum value ever attained in the
past. This assumption is implemented to take into account alternating periods of
starvation and re-feeding.

- Maintenance

Reperves R
& ——= Fggs
A A-M N Ey| E-Ey

fpo- -
PN G

Fig. 1. Assumed energy fluxes through an organism. The organism acquires energy at a
rate (A) dependent on its size and its environment. Maintenance costs (M) are debited di-
rectly from acquired energy (A). A fixed fraction & of the net production energy (4 — M) is
allocated to growth and the remaining 1 — « to the reserves. When maintenance costs cannot
be met from current acquired energy, reserves are used to cover the deficit. Allocation to
reproduction (R) proceeds when reserves exceed a threshold level (E;).

= Biovolume
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Table 1. The variables and parameters of the energy budgel model. e, t, and L in the second
column denote the dimensions of energy. time and length.

Symbol* Dirnension Interpretation

state variables

1% L3 Biovolume
E ¢ Energy reserves
environment
Y e Yolk energy
[¥] eL™ Size-specific yolk energy
f - Scaled functional response
parameters
{An} el ¢! Maximum surface area specific
assimilation rate
{Ame} eL-2t! Maximum surface area specific
acquisition rate for embryos

[M] eL™* ™! Mainienance cost per unit biovolume per time
[G] el Energy costs for a unit increase in biovolume
a — Fractional allocation to growth
o t! Allocation of excess storage to reproduction
V, L? Biovolume at birth
v, L? Biovolurne at puberty
v Lt} Parameter related to embryonic growth
compound parameters

= % 1! Growth rate constant
(E.] = w el™? Maximum energy density

(Al N’ ; , .

Vi = ( M) ) L Maximum biovolume
E, = [Eg]V, € Threshold energy level for reproduction

“The following conventions are used: quantities which are expressed per unit of
biovolume have square brackets [ ] and quantities which are expressed per unit of surface
area have braces { }

Muintenance. The model assumes zero maintenance cost for reserves. The mainte-
nance rate M is taken to be proportional to biovolume, i.c.

M =[M]V, (1)

where {M] is the amount of energy needed to maintain a unit of biovolume per unit
of time. Following Kooijman’s [11] notational conventions, we are using square
brackets [ ] to denote quantities expressed per vnit of biovolume, and braces { } to
denote quantities expressed per unit of surface area.

Growth. The conversion efficiency [G] of energy to biovolume is assumed to be

constant. Thus
dv _ G

dr 61
where G is the energy flux to growth (Fig. 1),

2
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The individual dynamics for the three life stages are described below. Because
of the difference in the mode of energy acquisition, embryos are discussed sepa-
rately from juveniles and adults.

2.1. Embryonic stage

Embryos do not feed but they absorb energy from the yolk of the egg and use
it first for maintenance. A fraction « of the remaining energy is used for growth
and the rest is deposited (‘internalized’) as storage material in embryonic tissue.
Differential equations describing the embryo’s dynamics can only be derived once
we have rules that specify the energy acquisition rate, i.e. the flux A in Fig. 1. We
consider two approaches to modeling this acquisition flux which lead to two alter-
native formulations of embryconic development. The two approaches make identical
assumptions on the partitioning of the energy between growth and storage but they
differ in their assumptions concerning the rules that define the energy flux from
yolk to embryo and in the rules that determine the transition from embryonic to
Jjuvenile stage, i.e. the end of embryonic development and the commencement of
feeding. For the first formulation we assume that the transition occurs when the
embryo reaches a fixed size V}, at which the yolk energy drops to zero. For the sec-
ond formulation we assume that the transition occurs when the rate of acquisition
of energy cannot cover maintenance of an embryo of a size V.

Formulation 1. The first and simplest approach to modeling the energy flux from
yolk to embryo assumes that energy is transfered at a rate proportional to the em-
bryo’s surface area. This implies that the energy acquisition rate is A = {A,.} V23,
where {Ap.} is a proportionality constant which can be interpreted as the maxi-
mum acquisition rate per unit of surface area. The rate at which the yolk energy ¥
is depleted is then described by

dY
— = —{AnlV??. 3)
According to the net production energy allocation scheme, a fixed proportion & of
the net production A — M is channelled to growth and the remaining portion is
deposited as storage material in embryonic tissue. Using equations (1) and (2), the
rates of change of biovolume and energy reserves in the embryo are then given by

dVv

= [g—] (tAmel V22 — (M), @
dE
— == (1AnIV¥ - [M1V). (5)

Initially the biovolume and the energy reserves of the embryo are infinitesimally
small. If biovolume at birth V}, is specified, then the initial yolk energy ¥y is not
a free parameter, its value being determined from equation (3) and the condition
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_ ; - i 3 1Ame

Y = 0 at the end of embryonic development. We assume that V, '~ < ik (¢
ensure that the energy acquisition rate exceeds the maintenance rate so that the size
Vp can be reached. The initial energy yolk energy as well as the incubation period
are needed for life history studies and for developing physiologically structured
population models. The formulae that give the initial yolk energy ¥p and the incu-
bation time ap, as well as details on the dynamics of the embryo may be found in
Appendix A.

Formulation 2. The second approach adopts Kooijman’s [I1] representation of
depletion of yolk energy. We define the size-specific yolk energy [¥] to be the
(absolute) amount of energy in the yolk relative to the biovolume of the embryo

) 4
(Y] = ?). Kooijman assumes that the decrease of the size-specific yolk energy

dlY
is a first order process, i.e. ~u = —alY]. He assumes the parameter a to be

inversely proportional to the length of the embryo, and the rate of decrease of the
size-specific yolk energy is then given by

dlY] 173
—— = —pV 13y,
yr v [¥] (6)
where the dimension of the parameter v is length per time.
The embryo’s energy acquisition rate A is the rate at which the absolute amount
of energy stored in yolk is utilized. Thus,
d¥ ( d[¥] dv )

A= = (V=2 4 [Y)—
+[]dr

dt 7

Following the net production scheme described above and using equations (1), (2),
(6) and (7}, the rates of increase of biovolume and energy reserves in embryos are
given by the following equations

avi_ @ vy 2
dt  [GIV 1 aY (W V(M ) ®)
ﬁ _ (1 —a)[C] 23y _ 2
dr  [G]V +af (”V Y —IM]V ) ©)

The dynamics of the absolute yolk energy are then deseribed by
ay Y

e T (pGIV?2 + a1V ). (10)

The initial biovolume of an embryo is negligibly small. Although the initial
size-specific yolk energy is therefore infinitely large, the initial (absolute) yolk en-
ergy Yo is finite. As with formulation 1, Yp is not a free parameter, its value can be
determined from equations (6) and (8} and the conditions at the end of embryonic
development, which occurs when the acquired energy cannot cover maintenance
demands of the embryc of fixed size Vp. In Appendix A we give the details of the
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calculations for determining ¥p. These details also permit the calculation of the
incubation time ap,.
. : dE  [G](1 —a)

The systems of equations (4-5) and (8-9) both imply that ST .
[Em]. i.e., the rate at which energy reserves change per unit change of biovolume
is constant. The initial biovolume and internal energy reserves are negligibly small
compared with those at the end of embryonic development. Hence, using the as-
sumption that V({0) = E(0) = 0, we obtain that E{t) = [E,]V (). For both
formulations it follows that energy reserves are proportional to embryo biovolume
throughout embryonic development, and that E(ap) = [E,]1Ve, a result we use as
the initial condition for the energy reserves of a juvenile.

Figure 2 illustrates the predictions of the twa formulations of embryonic de-
velopment (see Appendix A for analytic proof). The biovolume and yolk energy
reserves are, respectively, increasing and decreasing functions of time. Figure 2a
and b illustrate the possible type of graphs representing the solutions of equations
(3) and (4) (i.e. formulation 1). The curve representing the yolk energy Y is concave
during development. The curve of the biovolume V, depending on the parameters,
might be convex (Fig. 2a) implying that the rate of increase of V increases during
embryonic development, or it might have a point of inflection (Fig. 2b), implying
that the development is fast during the first part of the incubation period following
a retardation of development. Figure 2c illustrates the graphs representing the so-
lutions of equations (10) and (8B) (i.e. formulation 2). The curves of the yolk energy

4 ——— . FRPTPR ’ 8 } . . — . 1
@ (A} =04 (o) {A_} =03
2 P - i -
g : ’ _,// & 5 ! ’fff/ ’ 2
= e = = e =
S L Ec E
0 Time 20 0 Time 40
4 : PR -
() v=03]"
> : =]
%D - V 1 §
5 ! g S,
ﬁ . =
= ‘ ) 8
0 _____ e m _ 1 0
0 Time 15

Fig.2. Dynamics of embryo hiovolume (V) (solid curve) and yolk energy (¥) (dotted curve)
during embryonic development. (a) and {b) Solutions of equations (4) and (3). (¢) Solutions
of cquations (10) and (8). (See text for details.) The parameter values, common to both
formulations, determining the resulting trajectories are: o = 0.6, [G] = 0.9, [M] = 0.3,
V, = 0.8, and V({0) = 107°.
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and biovolume now both have a point of inflection. Both formulations of embryonic
development capture the qualitative dynamics observed during embryonic growth
as illustrated in [11, pages 86-87).

2.2. Juvenile and aduit stage

Assimilation. We assume that feeding organisms ingest food at a rate proportional
to the surface area of their food catching apparatus. In addition, we assume that
the ingestion rate of the organism of any given size is proportional to a measure
f € [0, 1} of the food environment. The quantity f (called the scaled functional
response) represents the ratio of the organism’s feeding rate to the maximum feed-
ing rate for an organism of that size. We assume that f is an increasing function
of the ambient food density, which in general is a function of time. The conversion
efficiency of ingested food to assimilated energy is assumed to be constant. Hence,
the assimilation or acquisition rate A for an isomorph of biovolume V is

A= {An}f V¥, (11)
where {A,,} is the maximum assimilation rate per unit surface area.

Reproduction. Although reproduction involves a series of discrete events (e.g.
births, oviposition), the energy flow to reproduction can be regarded as a con-
tinvous process. We assume that stored energy reserves are used for reproduction
by mature individuals at a rate proportional to the amount of reserves in excess of
a threshold energy level E;,. This threshold energy is related to maturation and is
taken to be equal to energy reserves of the organism at puberty. The exact expression
for £}, is given later in this section. Thus, the reproduction rate R is

R =0(E ~ Ey)., (12)

where o is the allocation rate of excess storage to reproduction. The subscript “+’
means that the reproduction rate is zero when the term within parentheses is neg-
ative. The threshold energy cannot be used for reproduction but it can be used for
maintenance under starvation conditions. A similar approach in modeling repro-
duction is used by Ross and Nisbet [28], but they assume that the threshold energy
level is proportional to biovolume.

Energy allocation rules. Using the net production energy allocation scheme de-
scribed above and illustrated in Fig. 1, assimilated energy is first used for mainte-
nance. When the rate of assimilated energy A in (11) exceeds the maintenance rate
M in (1), the net production A — M is aliocated to growth and reserves, depending
on the total energy of the organism. When current assimilated energy cannot meet
maintenance costs, energy in reserves is used to cover the deficit. Energy in the
reserves is also used by mature individuals for reproduction at a rate given by (12).
The individual is assumed to die instantaneously when energy in the reserves drops
to zero.
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The primary determinant of the dynamics of the state variables is the allocation
of net production to growth (i.e. increase in V) and reserves. When the net produc-
tion A — M is negative, the organism does not grow, and energy from reserves is
used to meet the deficit and meet maintenance requirements. When net production
Is positive, the default allocation tule is (as already noted) to assign a fixed fraction
a of net production to growth. Under some circumstances (discussed later in this
section), this rule leads to a decrease in the total energy content ¢, & := E 4 [G]V,
of the organism. Our key concept is that the organism adopts an allocation strategy
that attempts to avoid such a decrease in total energy. The rate of change of the total
energy content is equal to the difference between the energy gained from food and
the energy lost for maintenance and reproduction, i.e. ' = A — M — R. Thus we
assume that an organism at time ¢ makes the default allocation to growth only if

D) = By (B) = Urzlficftb(r) and (1) > 0. (13)

We call this “the growth condition”; when it holds, the changes in biovolume and
reserves are described by the “growth equation”

dv
e N
dE
= =(- ({Am}fV2/3 — [M]v) — G (E—Ey), . (14b)

If the growth condition is not met, the organism alters allocation to growth
as follows: First, if the total energy content at time ¢ is less than ®,,,,, then all
net production is assigned to reserves. The system then follows the “no-growth”

equations

v _ 0 15a)

dt (I5a
‘fi_f = {An}fV¥ — MV =6 (E — E,,),. (15b)
Second, if the total energy content at time ¢ is equal to @, and &’z 7) = 0, then
there are two possibilities. If ®”(+™) is non-positive when evaluated with both the
growth and no-growth equations, then the system follows the no-growth equations
(15). However, if ®”(t1) is negative when evaluated with the growth equations
and positive when evaluated with the no-growth equations, then the system fol-
lows a trajectory which we call “balanced-growth” that keeps ¢ constant. Thus the
equations for balanced-growth are

{(AmIVHP f — M)V — G (E — E;;). =0, (16a)
E+[GlV = Ppyy. (16b)

'™ (¢=) and "™ (¢} denote respectively the left and right n — th order derivative of &
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The titme ¢ is measured from birth where V(0) = V;, and E(0) = [E]Ve. A
juvenile individual becomes an adult, and therefore it is able to reproduce, on reach-
ing a fixed size V,,. We assume that the threshold energy E,, is equal to [E, ]V,
which is the maximum value energy reserves reach during the juvenile period. The
latter follows from equations (14)—(16). This assumption ensures that juveniles do
not reproduce, as the reproduction terms in (14b), {15b), and (16a) are zero, since
E < E,.

The theory developed in this section generalizes to variable environments,
which cause one or more of the model parameters to vary with time. Of particular
biological interest is variation in the food supply which leads to time dependence of
the parameter f representing the scaled functional response. The trajectories for the
balanced-growth can be found by differentiating equation (16a) after substitution
of £ from (16b). We obtain V from the equation

, 3 AV . R

v | o —eenviE —aqany O OV = i >0,
v

f’ SHAn]V if @pay — [G1V — E;p < 0.

3MIVIS —2(AL) f7

(17}

£ 1s then calculated using equation (16b). In Appendix B we analyze the dynamics

within the different growth regimes and the transitions between regimes for the
situation where f € [0, 1) is continuous and differentiable function of time.

For simplicity we nondimensionalize equations (14) — (16) by introducing the

scaled variables
13
4 E
£=1— and & = ,
Vin VulG]

3
where V,, = (%) is the maximum biovolume an organism attained when food
is abundant and the organism never ceases growth. With this change of variables

the growth condition takes the form

W(t) > Wmgr 1= [max Wz} and W) >0, with W) =& +£3().

<T<t
(18)
The dynamics of the scaled variables £ and & are given by
iagg (f-9 19
=Y , (19a)
dé& ' 1—
ey — (f -~ (6 - —283) | (19b)
di a PJ,

for all ¢ for which inequality (18) holds. The parameter y = %-?é—]] represents the rate

at which the organism would approach maximum size if all net production energy
were allocated to growth, and £, is the scaled length at puberty.
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Fig. 3. Trajectories of the scaled length and scaled energy reserves as functions of time for
an individual growing in variable food conditions (top: f(t) = 0.4+40.1¢/(¢ 4 10°), middle:
f@) =0.540.001sin(2x (+ + 10)/120), bottom: f () = 0.5+ 0.02sin(2x(r + 10)/120)).
The marks indicate the transitions between the different regimes. The beginning of the
growth, no-growth, and balanced-growth regimes is marked by “+7”, “x”, and “o”, respec-
tively. The parameter values determining the resulting trajectortes are: y = 0.11, o = 0.4,
£, =102,£¢, =03, and o = 0.05.

When the growth condition (18) is not met, then the scaled variables ¢ and &
are given by the scaled “no-growth™ equations

de
<o, 20
dt 0 (202)
dé& 1—
S oo ——28) | (20b)
dt o P .
or the scaled “balanced-growth” equations
2 l—a 4
p(f -0 —al6-———F) =0 (21a)
a PJ,
&+ 8 =W, (21b)

Numerical simulations indicate that an organism enters a balanced-growth
regime when f increases with a relatively small siope. Figure 3 shows the
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trajectories of the scaled length and scaled energy reserves for some choices of
the function f. The top figures show a transition from growth to balanced-growth
for a functional response which increases slowly with time. The middle and bot-
tom figures correspond to periodic functions with the same period but different
amplitudes. We observe that balanced-growth is induced when f increases slowly.

3. Dynamics in constant environment

We consider the special case where the scaled functional response f is constant.
In this case, it follows from the analysis in Appendix B, that the organism can be
only in a growth or no-growth regime depending on parameters values.

We assume that a newborn is in the growth stage, i.e. at t = 0 system (19)
governs the individual dynamics. This is true only if f is larger than £,, the scaled
length at birth. If f < ¢, the individual will survive without growing for a finite
time utilizing its reserves. If, in addition, equations (19) hold for all positive ¢,
then it follows that the scaled length £ as a function of time is given by the von
Bertalanffy equation

L) = f—(f —Lp)e 7, (22)
The duration of the juvenile period at constant food density with the functional
response f > £, is

1 - ¢
ap=—lnf b (23)
ya f &,
At lower food densities with f < €, the length £, will not be reached.
The scaled energy is then given by
g(t) =
1—
2w, 0<t<ap,
o
1 _ 4
—“zﬁ, + 3y (1 —a)(f — e(:))f )N D gy g,
o
CIF
(24)

In Appendix C, we prove that o > y is a necessary and sufficient condition for
the growth condition to hold for all positive time. Thus, for o > y the dynamics of
the scaled variables £ and & are defined by system (19) for all r = 0, which can be
solved explicitly resulting to equations (22) and (24). Furthermore, it follows from

(24)thatif o > y,then (1) > _QZ?, (in the original variables E(t) > [E,]V,)

fort > ap, i.e. the energy reserves do not drop below the threshold energy for re-
production. For o < y, growth ceases at some finite time ¢, during the adult stage
(see Appendix C) such that

W (ty) =3y ()0 f — £0)) — o (cs"(m - l—;ﬁff?,) =0.

In this case the dynamics of the scaled variables are defined by the system (19) for

de d&
0 <t <t,andfors >t by , = 0 and m = 0. Thus, for constant f and for
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Fig. 4. Typical trajectories of the scaled length, scaled energy reserves, and reproduction
rate as functions of time for an individual growing in constant food conditions {solid curve:
high food, dotted curve: low food). Left column: asymptotic growth (¢ = y). Right col-
umn: finite growth (o < ). The parameter values determining the resulting trajectories are:
y =0l a=04,8 =02,¢, =03, 0 =0.3 (asymptotic growth) and o = 0.05 (finite
growth}.

t > 1y, all net production energy is allocated to reproduction implying that £ and &
remain constant.

Typical trajectories for the asymptotic growth (¢ > y) and finite growth (¢ <
y) cases are shown in Fig. 4. Inthe case o > y, the length approaches an asymptot-
ic size which depends on f and the energy reserves approach the threshold value.
Note that the peak of reproduction is at an intermediate age and as the animal gets
older and approaches asymptotic size, the rate of energy allocation to reproduction
decreases and approaches zero asymptotically. In the case 0 < y the growth curve
is of the von Bertallanffy type until the organism reaches a size at which energy
acquired cannot meet maintenance and reproduction demands. At that point growth
stops and reproduction continues at a constant rate.

4. Implications for life history theory

Ome classic problem in life history theory is to determine the strategies for allo-
cating energy between growth, storage and reproduction that will be favored by
natural selection. A DEB model that is fully specified for all life stages allows us
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to address a restricted version of that question, namely assuming that the organism
is constrained to follow the rules of our DEB model, what are the “optimal” values
of the modeli parameters?

The optimization approach rests on the assumption that there exists some quan-
tity related to fitness that is maximized by natural selection [18,27,29]. Once a
measure of fitness is identified, the next step is to choose adaptive life history traits,
defined by a set of rules for the life history patterns of the organism, that maxi-
mize fitness. The issue of what is being maximized has been the subject of many
discussions, partly because the appropriate measure of fitness changes with circum-
stances. In an unlimited, homogeneous, and constant environment the appropriate
measure of fitness is the intrinsic growth rate r [2,27,29], which can be obtained
by solving the characteristic equation,

[o 0]
f e " B)SU)dr =1,
0

where 8(z) is the average rate of offspring production by an individual at age ¢ and
$(¢) 1s the probability that a newborn will survive to age ¢. The functions g and
3. in general, might depend on the environment and the state of the organism. In a
stationary environment the most commonly used measure of fitness is the lifetime
reproductive success or net reproduction (Ry) [2,27] defined as

R0=/ B)S(t) de.
0

Ro is the average number of offspring that an individual is expected to produce
during its lifetime. If the individual is a member of a population at equilibrium then
it provides on the average one offspring, i.e. Rg = . In this situation, providing
Rq is an increasing function of the resource density, evolution minimizes the level
of resource per individual at which an individual produces on average one viable
offspring during its entire lifetime {19]. In other words, an individual, which is a
member of a population at equilibrium, will be favored by selection if it is able to
replace itself at a lower resource level than the current equilibrium density.

We assume that juveniles and adults have the same constant, age independent,
per capita death rate §, so that the survival function has the form

S(t) = e

We further assume that energy aliocated to reproduction is converted immediately
to eggs. For an organism whose energy allocation scheme for growth and repro-
duction follows the rules described in section 2 the fecundity function then has the

form
0 ! <dp,

py=1oc (.g’ - '—;“-ef,)+
Y0

where the numerator represents the rate of commitment of reserves to reproduction
and yp is the cost to make one egg with initial energy Yy (given by (27) or (31)),

t>ap,

52



Final Study Report — Nisbet, Muller

A Dynamic Energy Budget model 375

scaled to the maximum size V},; and the energy cost for growth [G). The cost for
the conversion of the reserve energy of the mother to the initial energy of an egg is
small in most cases since these type of energy reserves are chemically related, so
we ignore it. For constant environmental conditions the scaled length, £, and the
scaled energy, &, are given by equations (22) and (24), respectively. Substituting
the particular formulae for £ and § into Rp equation, we find that

— ‘.\ I
Ry — 3v(l —a)o ( (f—E(I))E’&[ EZ(r)e(a’—ya}(t—r}dT dt
Yo ap g
e_;“.\' 9
+m(f RAtY)4 (r_\)) , (25)

where 1; is the time growth ceases which is a finite positive number given by equa-
tion (35) when o < y, and infinity when o > y (see Appendix C). In the latter
case (o = y) the equation for Rg takes the form

R .
0 yolo + 8) s+ ay 5+ 2ay § 4+ 3ay

(26)

[t can be shown that for o > y, Ro is a monotone increasing function of f for all
f € (£p, 1). The restriction that f must be larger than £, is required in order for
the individual to become adult. For ¢ < y numerical simulations suggest that Rg
increases with f. Thus, we measure fitness by the lowest value of the functional
response f for which Rg = 1.

Our next step is to choose adaptive life history traits that ‘maximize’ fitness. A
classical physiological trade-off in life history theory is the allocation of resources
between growth and reproduction. In our DEB model the parameter o quantifies
the allocation of energy to growth and storage, and o the consequent allocation of
excess storage to reproduction. Thus we aim to determine the optimal pair of & and
¢ that will minimize f subjectto Rg = 1.

Setting Ry = | in equation (25), we obtain a relationship between the values
of the functional response f at which the organism can replace itself and the pa-
rameters o and o. We assume that the cost of an offspring, ¥, is given by equation
(27). The resulis do not change if Yy, is given by equation (31) in Appendix A.
Figure 5 shows a contour plot on the {0, a)-plane; along each contour level f has
the same value. We find that for small § the functional response takes the minimum
value at some point (¥, o) with * € (0, y) (Figure 5a). This implies that for
long lived animals selection favors the individuals that cease growth and continue
to reproduce at a constant rate, thereby avoiding the decline in reproduction that
would occur as asymptotic size is approached. Figure 5b illustrates that for large &
the functional response is minimized at the maximum o (o > y) the organism can
adopt. This implies that for short lived animals selection favors those individuals
that allocate stored energy to reproduction at the maximum rate. The model predicts
that individuals that adopt this strategy have high reproduction rate at early age and
as they get older the reproduction rate decreases to zero (Fig. 4).

_ 3y(l—a)a(f — e ( 22—t LU=
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Fig. 5. Contour plots on the (o, o)-plane; along each contour level f has the same value.
The numbers indicate the value of f along each line. The circle (o) indicates the optimal pair
of values (o, &) at which £ takes its minimum value. The parameter values determining
the resulting plots are: y = 0.3, £, = 0.2, £, = 0.3, 8 = 0.01 (a), and § = 0.1 {(b}.

5. Discussion

We have developed a general model of the life history of an individual organ-
ism, based on partitioning of net production. The model has a pair of ordinary
differential equations together with a history-dependent non-linearity (equation
(13)) that stops growth whenever there is a decline in the total energy stored in the
organism (structure + reserves). Similar conditions have been invoked by previous
authors (for example the “weight-for-length” rule in [4], and variant of Kooijman’s
net assimilation model that “switches off” reproduction when food is scarce (chap-
ter 4 of [11]). However, to the best of our knowledge, the analysis in this paper is
the first mathematical study of the effects of such a condition.

We focused on the dynamics of individual organisms under constant environ-
mental conditions. Even in this simple situation, the qualitative dynamics depend
in unexpected ways on model parameter values. Embryonic growth can have two
forms depending on the assumptions for acquisition of energy from yolk. The
growth of a juvenile is always of von Bertalanffy type, but there are two long-time
possibilities for adults: (a) von Bertalanffy growth accompanied by reproduction
at a rate that approaches zero as the organism approaches asymptotic size, or (b)
abrupt cessation of growth at some finite time, following which, the rate of repro-
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duction is constant. We are currently engaged in research (with W.S.C. Gurney,
E. McCauley, W.W. Murdoch, A.M. de Roos, and others) that will test these pre-
dictions on aquatic organisms. There are many problems in interpreting individual
growth curves, so this investigation is beyond the scope of the present paper.

Much of the motivation for careful formulation of DEB models comes from
the need to have a formulation that is valid in temporally varying environments. Of
particular interest is temporal variation in the scaled functional response () within
the range [0,1), corresponding to fluctuations in food availability for the organism.
Numerical and analytical studies suggest that our DEB model is well-defined, when
f varies continuously with time, but more rigorous study of the dynamics of both
our model and Kooijman’s model would be most valuable.

Extension of our analysis to cover variable environments is also of importance
for the application of DEB models to life history theory, The calculations in this
paper are very restrictive, yielding only the optimum values of certain madel pa-
rameters for an organism that experiences & constant environment and prioritizes
energy allocation in accordance with our model rules. In an unchanging environ-
ment, simple models (lacking reserves and an embryonic stage) suggest that the
optimal strategy for an individual is the “bang-bang” option of committing 100%
of net production to growth until a certain age, and thereafter 100% to reproduction
[2]. Thus even our *“optimal” organisms might be displaced by otherwise identical
animals following the bang-bang strategy. While consistent with some life histories,
the bang-bang strategy is not followed by the many organisms that simultaneously
grow and reproduce, and which motivated the development of Kooijman’s [11]
model and our own. The most commonly invoked ‘explanation’ for the existence
of the latter type of organism is bet-hedging in a spatially or temporally variable
environment [2, 15]. Thus future DEB-based studies of life histories in variable
environments must tackle two very distinct questions. First there is the obvious
question of how our conclusions on optimal strategies change for a variable envi-
ronment. But more fundamentally, we have to ask whether our model, or any other
DEB meodel makes evolutionary sense, by asking whether our equations represent
a good description of the optimum strategy for an individual making unconstrained
choices in a fluctuating environment.

Appendix A

In this appendix we calculate the initial yolk energy (¥g) of an egg, the duration of
embryonic development {ay), and examine the behavior of the functions ¥ and V
representing, respectively, the yolk energy and the embryo biovolume for the two
formulations described in section 2,

Formulation I. For the first formulation (equations (3)—(5)), birth occurs when the
embryo reaches a fixed size V), at which the yolk energy drops to zero. To derive ¥,
we first solve equation (4) with initial condition V(0) = 0 to find that the growth
curve is given by

Vit) = V. (1 _ e—m:)3
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and the incubation time is

L, AR
ap = — In ——/——,
va v oyl

where Ve = {Ame})3 andy = M) . Itis clear from these equations that VI‘H
M) 3[GT

A
must be less than Lﬁ;—}, in order to ensure that the embryonic development last
for a finite period of time.
Using the above two equations and the conditions at birth, integrating equation
(3) from O to a;, yields the initial yolk energy

_ (Amel 23 VAN 13 (5113 1/3

We now examine the behavior of ¥ and V during embryonic development.
(From equations (3) and (4) it follows that ¥ and V are, respectively, decreasing
and increasing functions of time. The second derivative of ¥ with respect to ¢ is

Y 20{Ay V'
drz 3[G)

(tAmet — 11V17),

which is negative in (0, @} provided that VU3 {Ane) Therefore, the function
p ]
Y(£) is concave.
The second derivatives of V with respectto ¢ is

v a?vI53 /2
T = o (S{Am} - [M]V‘”) (tAne) - p1v17).

It f;);low(s that if 0 < VU3 <3 '[A’;? then 4 W > O forallt € (0, ap). If%L—‘;‘ﬁj <
Ame

vV, < iR then Y is positive in (0, ¢1) and negative in (¢, ap), where 1] = ’“j
is the time the embryo reaches a size at which maintenance rate is 2/3 of the energy
acquisition rate. In this case, the function ¥ (¢} has a point of inflection at ¢, and it
is convex in (0, ¢1) and concave in (11, 4;).

Formulation 2. For the second formulation (equations (6)-(10)), birth occurs when
the energy acquired from the egg cannot meet maintenance costs of the embryo

of fixed size Vp, ie,, when ¥ < I‘F—IIV:/E'. To derive ¥y we nondimensionalize
equations (6) and (8) by setting

_ﬂ 3 1% )1/3
y= [Em]’x“(vm '

_ G111 —a) C(VELN M)
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Equations {6) and (8) then become

dy 3yc oy dx y—X
—_— = = and —=ypoyg———o, 28
dt ~ I-ax a VYU —wy Tl (25)
Consequently,
d_x:__lfa' x(y —x) ’ 29)
dy 3 y{l—-a)y+1)
The substitution z = x~ converts equation (29) into the linear equation
dz | —«a ( l)
—=—"—\|z2—=],
dy 3((1—a)y+1) y
which gives x in terms of y by
l ( 1
X =
(1 =}y + D3 \xp((1 — )y + DA
1 -1
1 — a1
-— o AL a’s) , (30)

where xp, and y) are, respectively, the values of the scaled variables x and y at the
end of embryonic stage, which by assumption x, = y,. Lettingx — 0andy — oo

¥y
such that x?y = — , from (30) we obtain
Vme[Em] VHIG[E.'H]
1 -3
Ve [Em) 1 1 — afti_“ Tt 1/3 —1
Yo = - A3 - d
T e \m -+ 0B 3, sl =) T ds

with xp = (& )T]f. In terms of the unscaled variables, the initial yolk energy is
Vine ¥ gY
given by

1/3 _—"_1_1_“
YO — _[_9_] v / _ Hfﬂ}'orvh!'ﬂlsl/?)(l '-.5‘)_] ds
o Vb]’la(f’)yar."b’h”3 + )13 v Jo

=3

Gh
Thus, to determine the initial energy of an egg we need to know only the size of
the individual at birth.
Using (30) and the first of (28) we can also find the incubation time. After some
algebra the result is

1 [# dz
ap = v , (32)
0 uzl/3 4
(1 = g2 (yT ~ By, (4,0) + BZ@,O))
s 1 v
with B,(3, 00 = | s'°(0 -s)~ldsand z, = ——r—o.
3 0 Byan +u
1]
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We now examine the behavior of V and ¥ during embryonic development.
Equations (8) and (10) imply that V and Y are, respectively, increasing and
decreasing functions of time. The second derivatives of V with respect to ¢ is

d*v av!’?
di ~ ([G]V +aY)?

AV, T),
where
2 a/3 4/3
m(v.y) =a vy - My (vY—[M]V )
—v (v[G]V + [M]V4/3) .

Now, h(V (1), Y (1)) approaches a positive nomber as ¢ — 0 (i.e. V — 0 and
Y — Yy) and a negative as t — up (ie. V — Vyand ¥ — [—%’JV,:'/}). This
implies that /) changes at least once sign in (0, ap). We will show that 4, changes
sign only once in {0, ap), and therefore ‘f—} has only one zero, by showing that
| is a monotone decreasing function of time. After some algebra, we can show
that & increases in Y and decreases in V during embryonic development. Since V
increases and ¥ decreases with time, we then obtain that

dh dh, dV 3k dY

dr 3V di T8y dt
Therefore, there is only one point £1 € {0, @) such that A (V (), Y(r2)) = 0.
Consequently, the function V has only one point of inflection at £, and it is convex
in ({0, tz) and concave in (7, ap).
Similarly, the second derivatives of ¥ with respectto ¢ is

< 0.

d’y iy
a2 ([G]V +aY

V. ¥,
where
BV, ¥) =a (oY - (MIVH3) (%v[G] + a[M]V1/3)
—1[GIV (4(G] +a[M]v’/3) .

Now, i2(V, ¥) approaches a positive number ast — 0 (ie. ¥V —> Qand ¥ — ¥p)
and a negative as ¢ — ap {ie. V = Vyand ¥ — %V:ﬂ). This again implies
that iy changes sign in (0, ap). It can be shown that A3 changes sign only once in
(0, ap). Indeed, taking the derivatives of Ay with respect to ¥ and V, we find that

k2 -a'v(%v[G] +a[M]VI/Y
ary 3
and
bh 16 1
ﬁ = —u[G](W[G] + 3ar[z\zf]u““) + Em?[M]v-m(uY — S[M]V*3.
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Itis clear that 5 > 0.1f V43 > 2 then 82 < 0, while if V43 < L. then
ko

=y can also be positive. In the latter case, it can be shown that 7 > 0. Therefore,
for all 7 such that V4/3(1) > ]

dhy  ohadV  8hy dY
—=—— 4+ —— =<0
dt VvV dr Y dt
Consequently, the function ¥ has only one point of inflection, say, at #3, and it is
concave in (0, 13) and convex in (#3, ap).

Appendix B

In this appendix we study the behavior of the model within the different growth re-
gimes and the transitions between them. We assume that f € [0, 1) is a continuous
and differentiable function of time. All other parameters are positive constants,

First we consider the initial value problem (14) for f > 1y, with V{tp) = Vg and
E{15) = Ep. The change of variable L = V'/3 reduces (14a) into a linear equation
in L. From the basic theory of linear differential equations it then follows that there
exists a unique function V that satisfies (14a) for all ¢ > f#y and also V (tp) = V.
Substituting the solution V into equation (14b) we obtain a differential equation
E' = F(t, E) with F locally Lipschitz in the second variable. Using standard theo-
ry of differential equations [3], there exists a unique function E that satisfies (14b)
and E(1p) = Eg.

Similarly, if we assume that the system is described by the no-growth equations
(15), then there exist continuously differentiable functions V and E that satisfy
{15) for ¢t > ty, and also V{tg) = Vo and E(1g) = Ey.

Within a balanced-growth regime the total energy content & of the organism is

constant and " is negative when evaluated with the growth equation and positive
when evaluated with the no-growth equation. We find that

CD;:*, = {Am}vzﬁff'

%V*”-‘ (3{Am}Vf’ - ‘;—f(.’a{[m -ofGpv'”? —2{Am}f))‘ if E> E,,
(bn =

b3

%v-”-‘ (3{A,,,}Vf’ - %(3[M]V”3 - 2{Am}f)) . il E < By,

where the subscripts “ng™ and “g" mean that the function is evaluated at V and
£ from the no-growth and growth equations, respectively. Necessary cenditions
for the individual to be in a balanced-growth regime are f/ > 0 and 3([M] -
s[GHV3 —2{An}f > Oor 3[MIV'/3 — 2{A,,} f > 0. These conditions ensure

dv
that the denominators in equation (17) do not change sigh and — > 0. Thus

the organisim does not shrink in size and there exists a continuously tdifferentiablc
function V that satisfies equation (17).

In a variable food environment an organism may alternate between growth, no-
growth, or balanced-growth regimes. The initial values of V and E in a regime will
be their final values from the preceeding regime. Consequently, by construction,
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the functions V and E are continuous and piecewise differentiable for all ¢ > 0.
Furthermore, the function ®(t) = E(f} + [G]V(¢) is continuously differentiable
fort > 0. Indeed, if t;, k = 0, 1, ... denote the transition times, then on each of
the subintervals (f, fx+) the function & is continuously differentiable since it is
the sum of continuously differentiable functions and

(1) = {An) FOIV (1) — IMIV(t) ~ 6(E(t) — Er)y = A— M — R.
In addition, since the functions V and £ are continuous at #, lim ®'(¢) =
'f_".k_
fim &’'(t) = c, where ¢ = {An, }f(rk)v2/3(rk) MV (i) — o(E(t) — Eir ).

I—)-!k
Consequently, the derivative ¢’(z) exists at the points #; and /(1) = c.

Next we show the transitions between different growth regimes. Let us first as-
sume that at some time f#y the organism enters the growth regime with V(1) = Vg
and E{fp) = Ep; i.e. the dynamics of V and F are described by (14a) and (14b)
for ¢t > fp. If there exists a time | > 1y such that ®'(z{) = O and ¢’ < 0 on an
interval (1, £; + @) witha > 0, the organism stops growth and enters a no-growth
or balanced-growth regime. If @}, (1) < 0 implying @, (:]") < 0, the organism
enters a no-growth regime. If @ ( t+) > 0 implying @}, (") > 0, the organism
enters a balanced-growth regime,

Now suppose that the organism enters the no-growth regime at some time
and also that there exists a time #; > £y and @ > 0 such that fort € (¢, + a)
®(t) = Ppux(t) and O’ = 0, where ®ypyy, is the maximum total energy the indi-
vidual attained in the past. If ®'(#;) = 0 then, by continuity of &/, fb’ (x ]
and the organism enters the growth regime. If ®'(z;) = 0 then the orgamsm enters
a growth regime if CD”(I ) = 0 and a balanced-growth regime if (D”(t+) < 0.

Thus, the orgam:.m enters a balanced-growth regime at some tlme tp for which
(1, ) = 0, o) = Pmax (o), when ®y < Oand @5, > 0 on a small interval
to the right of fp. The organism exits the baldnced~gr0wth regime when either both
@} and @, are positive or @ > 0 and @, < 0 (organism enters the growth
reglme) or both Dy and O, are negative (orgamsm enters the no-growth regime).

Appendix C

The following proposition gives a necessary and sufficient condition on the model

parameters for which an individual growing in a constant environment reaches as-

ymptotic size; that is, growth does not stop in finite time.

Proposition 1. Let (E(r) & (t)) be the solution of system ( 19) with initial condeuons

(&M, &) = (f;,, Eh). Then V(1) > O and V(t) > 0max V(r) for all
<t

t = 0, where V(1) = g(r) + £3(1), ifand only if o > .

L - | — o .
Proof. For constant f > £, and initial conditions (£, 3,3,), the solution of

[V
system (19) 1s given by equations (22} and (24). The inequality ¥ (¢} > 0max w(T)
=TES
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for all r > 0 is equivalent to ¥'(¢) > 0 for all t > 0. Therefore, we must show that
Pty > Oforall t > Qifand only if & > y,

Using (24), we find that

3y (f — &) £ 0<t<a,
VO= 35— e (eﬂ(r) —a(l —cr)e“"""’)’f £ (x)elror dr) t>a,
(33)

Note that ¥'(z) > 0 forall ¢ € [0, apl.

From the Mean Value Theorem for integrals, we have that for any ¢ > a, there
exists & € [ap, 1] such that

,
[ E(r)e YD g — £2(8)

dp

2 - -
ft Ja—yare g _ L ENETTD — 07V Oh)
a, o — yo

Therefore, forany ¢ > a,

() =3y (f - @) (0 - 68 (1 - 7@ )) @y

1—
for some £ € [ap,t], where 8 = u. We will prove the proposition by
o —ya

contradiction.
Leto > y (equivalently 0 < 8 < ) and suppose that ¥'(f,) < (} at some finite

time t; = @,. Then from (34), forany ¢t > a, and £ € [ap, t]
r P r

() = 3y (f — £0)) (£2(1) — 063 (&) + BL2(E)el ~ro)ep—1))
> 3y (f — L)) (£2(1) — 02%(®))
> 3y (f — LN (1 —8) = 0,

This is a contradiction. This proves that if o > y then ¥/(¢) > 0 forall 1 > ap.
Now suppose that ¥'(z) > 0 forall t > a, and 0 < y. Then from (33) we
must also have that

Yy()>0 Yt>a, and Ilim W) =0,
-0

where :
(1) = £2(0) — o (1 a)e—(o—ya)rf 2(2)el = g,
ap

Ifyo <o < y,then@® > 1 and
]
lim f Ez(r)e(”_}'“)rdt = +}o00.
=00 u."
Using L Hospital’s rule, we find that

!
[ 22(g)eTraT gg ,
ap f

lim = .
{— 0 e(ﬂ'—}’Q‘)l o —yu

61



Sublethal Effects of Toxicants on Organisms. A Modeling Approach with Dynamic Energy Budgets

384 K. Lika, R.M, Nishet

Thus,
Jim y() = f(1 - 0) < 0.

Similarly, if o < v, then & < 0 and

f2

— >0
o — yo

I
]im] () YN G = —
100 ap

Thus,
lim ¥ (1) = —o00.
—r o0

1
Finally,ifo = ya,theny(t) = () —~o(l—a) | (1) dr and lim y () = —co.
Consequently, the assumption o < ¥ leads to i:ontradiction. Hence, if W/(¢t) >
Oforallt >aptheno >y. QED.
Proposition 1 implies that if 0 < o < y growth stops at some finite time. It can
be shown that there is a finite #, = inf{t > 0 : ¥'() = 0} for ¢ € (0, ) and that
asa — 0Y ore — y 7,1, — oo. We can find #; from equation

iy
(1) — a (1 — a)e v f ()T g =0, (35)

dp

where £(t) = f — (f — £5)e” V™. Substituting the expression for ¢ the integral can
be evaluated exactly resulting in a nonlinear equation for ;. We calculate ¢; using
the bisection method [23].
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A dynamie energy budget (DEB) model describes the rates at which organisms as-
similate and utilize energy from food for maintenance, growth, reproduction and
development. We study the dynamic bebavior of one particular DEB model, Kooij-
man’s k-iule model, whose key assumption is that somatic and reproductive tissues
are competing for energy. We assume an envirenment in which the food density
fluctuates either periodically or stochastically (pink noise). Both types of fluctua-
tions stimulate growth; the magnitude of the (average) increase in size depends on
both the strength and duration of the Auctuations. In a stochastic environment, the
risk of mortality due to starvation increases with increasing fluctuation intensity.
The mean lifespan is also a functton of the model parameter « characterizing the
partitioning of energy between sornatic and reproductive tissues. Organisms com-
mitting a large fraction of resources to reproduction endure periods of food shortage
relatively well. The effects of food fluctuations on reproduction are complex. With
stochastic food, reproduction in survivors increases with increasing fluctuation in-
tensities, but lifetime reproduction decreases. Periodic fluctuations may enhance
reproduction, depending on the value of «. Thus, a variable food supply stimu-
lates growth, increases mortality and may enhance reproduction, depending on life
history.

© 2000 Society for Mathematical Biology

INTRODUCTION

Organisms acquire energy from their environment and use it for growth and prop-
agation. These and other expenditures are commonly modeled in terms of budgets.
The simplest models assume a few fiuxes that do not change over time, and use a
mass or energy balance equation to analyse experimental results, More complex
models use dynamic equations to describe the change of a potentially large number
of many different budgets and fluxes. Models of both types abound in biology, and
some date back more than a century (Duclaux, 1898). Our interest here is in simple

* Author to whom correspondence should be addressed

00W2-3240/00/0601163 + 27 $35.00/0 {© 2000 Society for Mathematical Biology
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dynamic models with a limited number of budgets, which we call dynamic energy
budget {DEB) models. A DEB model describes the rates at which organisms as-
similate and utilize energy from food for maintenance, growth, reproduction and
development. These rates depend on the state of the organism (age, size, sex, nutri-
tional status, etc.) and the state of its environment (food density, temperature, etc.).
In this paper we study the behavior of one particular DEB medel in a variable food
environment.

Most DEB models are specific to one life stage of an organism or a (group of)
species, the goal being to get a close match between data and model descriptions
[see e.g., Kitchell et al. (1977), McCauley et al. (1990) and Mangel (1996)]. An-
other approach, followed here, is to use a single model that is sparse in parameters
and mechanistically justifiable, but that nevertheless describes a broad spectrum of
biological phenomena and life forms. Species are similar because they follow the
same principles for budgeting, but they are different because they have different pa-
rameter values. A well-known example of this approach is von Bertalanffy's (1957)
theory of growth, which uses only two parameters to fit the growth of many species
with remarkable success. We study the most comprehensive model based on this
approach, the x -rule model developed by Kooijman (1986, 2000) (see Fig. 1). This
mode] uses mechanistic reasening to describe the growth and propagation of a wide
range of species, ranging from bacteria to mammals, and with further mechanistic
assumptions, the model can be used to derive inter-specific scaling relationships for
physiological processes and body size. The model has been used in the study of
the dynamics of (structured) populations (De Roos, 1997; Kooijman ef al., 1999),
simple foed chains (Kooi and Kooijman, 1994) and ecosystems (Kooijman and
Nisbet, in press}, and it provides a basis for many concepts used in ecotoxicology
{Kooijman and Bedaux, 1996a,b).

Although DEB models, including the «-rule model, were developed specifically
for variable food environments (McCauley er al., 1990; Ross and Nisbet, 1990;
Kooijman, 2000; Lika and Nisbet, in press), to date most applicattons make an
assumption of constant food. However, a model that fits organisms in a constant
environment may not be appropriate when ambient conditions change with time.
With constant food, different models can make similar predictions, whereas tran-
sient dynamics reveal the more distinctive implications of the assumptions of a
model (Nisbet ef al., 1996). It is therefore important to analyse model behavior in
a dynamic food environment,

We study the behavior of the «-rule model in a fluctuating food environment.
We consider two types of food fluctations. One is a periodically variable food
environment, which may represent divrmal or seasonal changes; the other is an
environment in which food fluctuates stochastically but with some memory for
previous food levels {pink noise). We study survival and performance as a function
of the strength and the time scale of the food fluctuations, and also as a function
of a potentially adaptive model parameter, the parameter specifying the division
of resources between somatic and reproductive tissues. We first examine the dy-
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Figure 1. Kooijman's «-rule model assumes that an organism ingests food at a rate

dependent on its size and the food density (Kooiyman, 2000). Energy is exiracted from
foed and added to the reserves. The rate at which energy becomes available to the organism
depends on its size and stored energy density, Provided somatic maintenance requirements
are mel, a fixed proportion « of the available energy is allocated to sornatic maintenance
and growth combined. and the remaining | — « to either maturation (for embryos and
juveniles) or o reproduction and maturity maintenance {for adults). Growth ceases when
this fixed fraction « just meets somatic maintepance demands. Then, the organism may
still reproduce, provided that energy made available exceeds the requirements for somatic
and maturity maintenance.

namics of model equations analytically, which examination gives access to the
long-term dynamics in a periodically fluctuating food environment. Because of the
nonlinearities of the model, however, we need to rely on numerical studies for an
understanding of the transient dynamics. Numerical analysis is also the primary
means by which we study model behavior in a stochastically variable food envi-
ronment. We illustrate model behavior with the marine mussel Mytilus edulis, for
which realistic parameter values are available.

THE MODEL

The DEB modet used in this study, the x-rule model, is outlined in Fig. 1, and its
assumpltions are listed in Table 2. Kooijman {2000) has documented an elaborate
Justification of the assumptions, and a derivation of model equations can be found
in Kooijman (1986, 2000), Zonneveld and Kooijman (1989), Van Haren and Kooij-
man (1993) and Nisbet ez gl. (1996). Here, for brevity, we restrict our presention of
the medel to ectothermic, heterotrophic organisms that do not change shape during
growth [for a model extension that includes autotrophs see Kooijman and Nisbet
(in press) and Kooijman (2000, pp. 159-185); for species that do change shape
during growth, see, Kooijman (2000, pp. 26-29); and for endothermic organisms
see, Kooijman (2000, pp. 92-96)).

The assumptions in Table 2 imply that the dynamics of an organism’s growth and
reproduction are described by two differential equations. One specifies the dynam-
ics of structural body volume V, the other specifies the dynamics of the density of
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Table I. Symbols. A bar over a symbol refers to asymptotic values.

Symbol Dhimension Interpretation

It} — amplitude of scaled food density

’n — critical amplitude of scaled food density

e — scaled stored energy density

e —_ critical highest scaled stored energy density in limit cycle
Zmax — highest scaled stored energy density in limit cycle
Erm — scaled cumulative energy density committed to reproduction
f — scaled food density or scaled functional response

fa — average scaled food density

I - energy investment ratio, o £

L length shell length

m time™? maintenance rate coefficient

r time ™} von Bertalanffy growth rate, T(%%T

5 time~! squared food fluctuation intensity

¥V volume structural biovolume

Vi volume structural biovolume at birth

Vin volume maximum structural biovolume, m‘—;

Vp volume structural biovelume at matvration

Voo volume ultimate structural biovolume at constant food, f 3 Vin
z —_— random variable

¥ time™1/2 Gaussian white noise

s — energy partitioning coefficient

T time memory retention time

v volume!/3 time =1 energy conductance rate

w rad time ! angular frequency

wy rad time ~! critical angular frequency

the energy reserves, { E], defined as the amount of stored energy per unit of struc-
tural volume. Reserve density has a maximum value [E,], which is independent
of the size of the organism and the feeding conditions. The rate of change of stored
energy density depends on the rate A at which energy is assimilated from food,
and the rate at which energy is utilized. The assimilation rate is written in the form
A = A, fV%?, where the proportionality constant A,, represents the maximum
surface area specific assirnilation rate and f is the scaled functional response (type
II}. The rate at which energy reserves are released for utilization is a first order
process inversely proportional to V!/°, When maintenance requirements can be
met this way, a fraction « of the energy released from the reserves is used for the
somaltic processes of maintenance and growth, with maintenance having priority;
the remainder is used for reproduction (adults), development (juveniles) and for
maintenance of the state of maturity. This is the «-rule. The x-rule cancels when
maintenance demands cannot be met this way. Then, maintenance requirements
are being paid first, and the remainder is used for reproduction and development.
When even this is insufficient, that is, the rate at which energy is released from
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Table 2. Assumptions of the x-rule madel for ectothermic heterotrophs.

= There are two state variables: structural body volume, and stored energy density scaled 1o its
maximum.

s There are six energy fluxes: assimilation; somatic maintenance; somatic growth; development;
maintenance of the state of malurity; and reproduction. These energy fluxes are irreversible.

»  There are maximally three life stages: embryos, which neither feed nor reproduce; juveniles,
which may feed but do not reproduce: and adults, which may feed and reproduce.

¢ The rate of food uptake is preportional to the surface area of an organism, and is a hyperbolic
function of the food density (type II functional response).

» Energy assimilated from food becomes part of the reserves. The dynamics of the energy reserve
density are first order, with a rate that is inversely proportional to the volumetric length of an
organism.

= A fixed fraction of the energy released from the reserves is commited to somatic maintenance
and growth; the remainder is used for maturily maintenance, and development or reproduction.
Maintenance demands have priority, and the partitioning of energy is modified to meet somatic
maintenance.

s Death due to starvation occurs when somatic maintenance requirements cannof be met.

= The chemical composittons of structure and reserves are constant (homeostasis), and thus the
following are constant:

- the conversion efficiency of food into energy;

- the cost to form a vnit of structure;

~ the cost to maintzin a unit of structure for a period;

— lhe cost to maintain the state of maturity for a peried;
- the cost te form a unit of reproductive matter.

e Life stage transidons occur when the cummulative amount of energy spent on maturation ex-
ceeds a theeshhold. An embryo initially has a negligibly amount of structure, and, when prop-
agation is via eggs, ils energy reserve densily at hatching equals that of its mother during eggp
formation,

reserves is less than the rate at which energy is needed to maintain viability, the
organism dies. It takes a constant amount of energy [M] to maintain a unit of
structure for a period of time, and a constant amount of energy [G) to form a unit
of structure.

Although the model describes flows of energy, our primary interest is in the dy-
namics of quantities {e.g., size, rate of reproduction) whose dimensions do not
involve energy. It is convenient to scale variables and parameters to take account
of this, and, following Kooijman (2000), we define the following quantities: the

scaled density of energy reserves, e = I—E-‘L] the energy conductance rate, v = {—1‘.:7;
the maintenance rate coefficient, m = %; and the investment ratio, g = rILgLI
L

Note that g depends on «, a primary parameter we use explicitly at several points

in this study. This scaling with g is a bit unfortunate, but is a price worth paying to

retain notation consistent with the large body of literature on the «-rule model.
With ¢ replacing [ E] as the state variable for energy reserves, the state equations

now become
de

E :UV_TIF(I)(f(I)—e(f))) (0
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dV _ (ue)Vie) ~ mgV(), @)
dr e(t) +g

The subscript '+ in equation (2) means that an organism cannot shrink, i.c., % =10

whenever ve(r)V.%(r) —mgV (1) < 0, i.e., when the default energy committed to
somatic tissues is insufficient to meet maintenance demands. The maximum struc-
tural body volume, V., an organism can attain is V,, = (m—"g)3; V. 18 proportional
to &%, because of its dependency on g.

We also seek to quantify reproduction. The assumptions specify the rate at which
energy is committed to reproduction. We divide the amount of energy committed
to reproduction by the maximum structural volume an organism would attain with
abundant food if it were to devote all its energy to somatic tissues, and scale the
resulting density by the maximum possible density of the energy reserves. This
measure is the scaled cumulative reproductive output, e,,,. Provided that the or-
ganism has reached the size of an adult, that is V > V), the dynamics of e,
follow (Kooijman, 2000, pp. 100-101)

dt‘rm L g+e

pral 3)

k)

f,—;(ueV2/3—mg(xV—l—(I—.tc)V,,)).,_ if %—:éi>e> 1:%

m Vm

wWIl—x e (V2 my . yi
)(Lf m )—mgVP IfEZme-

The first condition is true for growing organisms, whereas the second applies to
non-growing individuals. Note that this equation does not necessarily define the
actual reproduction rate, The model assumes a continuous and irreversible alloca-
tion of energy reserves for reproductive purposes, but the release of repreductive
matter may be a discrete event,

The model simplifies considerably when the food level is constant. The scaled
density of stored energy will approach an equilibrium, that is, € = f, so that
equation {2) can be solved analytically. The solution of equation (2) is the well-
known von Bertalanffy growth equation,

where Vo{® = f V' is the ultimate volumetric length of the organism at a given
food level, and r = % is the von Bertalanffy growth rate parameter which
defines how fast an organism approaches its ultimate size. For practical purposes,
the volumetric lengths in equation (4) can be substituted for an experimentally
convenient length measure, such as shell length in mussels, since we confined this
presentation to isomerphic organisms.

FOoOD AVAILABILITY

We now want to understand how model organisms perform in a variable food
environment. Food levels may fluctuate in many different ways. We consider two
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idealized forms of variation, one in which food levels vary deterministically, and
one in which food levels are in part driven by a stochastic process. For both types,
we assume that the variations operate directly on the scaled functional response
rather than on the food density, an assumption that makes it relatively easy to com-
pare model behavior under different fluctuation regimes. The form of the scaled
functional response in the model is type II, but we note that our analysis holds for
any dimensionless form that takes values between 0 and 1,

For deterministic food variations we assnme a periodically changing food en-
vironment resembling, for instance, the alternation of high and low foed due to
diurnal or seasonal changes. For simplicity, we only consider single frequency
variations. Assuming a scafed functional response that fluctuates sinusoidically
with an amplitude a, angular frequency w, and a mean value f, between 0 and 1,
we have

fy=fatasin@),  a=<min{fy, 1 - f} (5)

Over a full period, the mean scaled functional response is f,, and the mean square
deviation from f, is 0.5a%. In contrast to the symmetrical fluctuations in the scaled
functional response, the unscaled food density shows narrow seasonal peaks and
changes little in the off-season, a pattern that gets more pronounced with increasing
fa and a. This patteen is consistent with food variations in environments in which
a season with excess food alternates with a longer, less productive season, a pattern
common in temperate and polar regions.

In order to simulate a stochastic environment, we assume pink noise z(z) is added
to the mean value for the scaled functional response [see, Nisbet and Gurney (1982,
pp. 240-246)]. However, because 0 < f < 1, we require to bound possible
outcemes to ensure f stays within this range. So,

0 it fu+z2(t) <0
fiy=qfatztt) 0= fatz()=<] (6)
I if fat+z(t)>1,
where z(t) is a random variable whose dynamics are given by
dz -z
== sV 7
7 v, (7

in which z is the memory retention time, which quantifies the exponentially fading
memory for previous values of z(r), and y is Gaussian white noise with intensity
8'/2. The pink noise assumption ensures that food is likely to be abundant at some
time if it was abundant just prior to that moment, and scarce when it was scarce
just before, Gaussian white noise generates a random walk, but f is bounded
here. Unless f, = 0.5, the distribution of f(r} is skewed, and this skewedness
increases with the intensity of the fluctuations. When f, = 0.5 the distribution is
symmetrical. Then, like the deterministic case, the expected value for the scaled
functional response is f, and, while depending on the cut off of £, the mean square
displacement from £, is maximally S%z.
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DYNAMICS IN VARIABLE FOOD ENVIRONMENTS

‘We wish to solve two questions with regard to variable food environments. First:
‘Can an organism survive in a variable food environment?’, and second: ‘Given
that an organism survives in a variable food environment, whal is the form of the
long-term dynamics? The latter question is relevant since older organisms that
have (apparently) ceased growth will have dynamics that are arbitrarily close to
those long-term dynamics. Because of the nonlinearities in the model, neither
the transient dynamics with deterministically fluctuating food, nor the behavior of
the model when food varies stochastically can be determined analytically. In a
later section, we address these issues via numerical studies. We show here that,
under certain circumstances, an organism may survive a periodically varying food
environment for an indefinite time, and that the long-term dynamics of the state
variables determine the environmental conditions for survival at any time. We also
compare long-term reproduction in periodically variable food environments with
that in a constant environment.

We show in the Appendix that, provided the organism survives, its scaled energy
reserve density approaches the limit cycle

&)= f, + —“~—2 sin(wrf + @), )

i+ (ruf"”)

where ¢ = tan . 15 a measure (in radians) of the extent to which fluciuations
in e ultimately lag behind f. The organism continues to grow until it attains a size

V given by
_ 3
V= (‘—maxv) ‘ 9)
nmy

with &5, being the highest scaled energy density in the limit ¢ycle, which occurs
when sin(wr + ¢) = 1. Figure 2 illustrates the transient approach to the fong-term
dynamics discussed above,

Equations (8) and (9) reveal three important model features. First, the long-term
dynamics of ¢ and V are independent of initial conditions. Provided an organism
can survive periods of low food availability, it will ultimately grow to a certain
size and exhibit certain reserve dynamics independent of the season it was born.
Second, the highest scaled energy density in the limit cycle and the ultimate size
increase with the amplitude of the food fluctuations. Thus, surviving organisms
grow bigger the more intense the fluctuations in the food environment. Third, the
capacity of the energy reserves 1o buffer changes in the food environment depends
on the rate at which the food environment changes relative to the dynamics of
encrgy reserves, When foed levels are changing relatively slowly, that is w is small,
emazx Will be close to f; + a, and reserves are fluctuating with an amplitade similar

-1 !
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Figure 2. The scaled stored energy density (solid curve; left curve) tracks (with a lag)
the scaled focd density (dotted curve; left panel) in a variable food environment. As the
organism grows, the time that the scaled stored energy density lags behind the scaled food
density increases, while the amplitude of the energy density decreases. Tts length as a
function of time is shown in the right panel (solid curve); the dotted curve in the right
panel represents growth at constant food.

to that of food availability. However, in a rapidly changing food environment £g,,
will be close to f, and, from the organism'’s point of view, the environment will be
virtuafly constant.

Now assume that an organism is born into an environment similar to that of its
mother, implying that e(}} is in the range of values for the scaled functional re-
sponse it will experience (see Table 2), Then, if an organism is able to survive
through a [imit cycle, it is also able to survive through the transient (see the Ap-
pendix). Thus we can simply study long-term dynamics in order to answer ques-
tions about the environmental conditions that ensure viability. The organism grows
to a size proportional to the highest scaled energy density in the limit cycle, but
its long-term survival depends on the lowest scaled density of energy reserves in
the limit cycle £min. Equation (8) implies &yin = émax — 2a(1 + (“’fﬂ—“? 2)]’(2. Be-
cause survival requires that V(1) < (£2¥) for all ¢ (see the Appendix), we get the

Kmg
following condition for long-term survival:

2a

el

[

mag

—emnil — k) =0 (10

Using equations (8)—( 10}, we can now determine the highest scaled density e, of
cnergy reserves in an organism that is just able to survive,

_ 2fu
e = .
l 4+«

The highest amplitude ¢, at which an organism is able to survive periods of low

(I1)
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food is
_ wie?
ac=(e(.'_fu) 1+_‘3'_L§‘ (12)
m-og

which reduces to

b= for (13)

in a very slowly changing food environment. Finally, the slowest angular frequency
ensuring survival from starvation is e, with

_omg(l+x) [ all +x)\
“="325 \/(fa(i—x))_l' (4

A prominent role in these expressions for critical values is played by «, the param-
eter that defines the partitioning of resources over somatic and reproductive tissucs
(note that the compound parameter g is inversely proportional to k). Indirectly,
it also determines the organism’s abilities for surviving poor food conditions; the
potential for survival declines with decreasing .

Having determined the long term behavior of the state variables, we can now
calculate long-term reproduction. From equation (3) the long-term reproduction
rate Is

dery,
dt

_ mg( Tran (1) = Ky — (1 = 1) ) (15)

with e(t) given by equation (8). Integration over a full period then yields the ulti-
mate reproductive cutput in one cycle p, as

2 v,
p: _x fﬂg II]IKfU qu _(l_x)_ M (]6)
w Vm

Unlike long-term growth, ultimate reproduction may be reduced in a variable food
environment. In a constant environment the ultimate reproduction during a time
interval 27 /e equals

T Cmg (= )~ Vol V. (17)

Thus, ultimate reproduction m a wnstam environment exceeds that in a variable
food environment when « > —"'F“—-;"— Organisms with x € (0 ﬁFf"—ﬁ-) perform

Binax = fid

better in a variable food environment.
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Table 3. Parameter values of the mussel Myritus edutis with & = 0.8.

Symbol  Value Correction factor?  Reference

dm® 0333 (Van Haren and Kooijman, 1993)

p 1.286 o8 (Van Haren and Kooijman, 1993)
Lh 0.001 m - (Seed, 1976)

L 0.100m 0F {Van Haren and Kooijman, 1993)
Ly© 0.003 m = (Seed, 1976)

mY 0.583 y~! — {Kootjman, 2000, p. 275)

vd 0.075my™! — (Kooijman, 2000, p. 275)

& The values of parameters that depend on « are calculated by multiplying the comrection factor with
the value listed. ® Converts volumetric length into shell length, L = dip VI3, € The assumplions
imply Lp o x /{1l — x) {(Zonneveld and Kooijman, 1989). 4 Normalized to 20°C (Kooijman, 2000).

NUMERICAL STUDIES

In the previous sections, we analysed the behavior of the «-rule model in a dy-
namic food environment, We were able to specify long-term dynamics and survival
conditions in the situation where food varied deterministically. However, transient
dynamics with deterministic food remained largely undetermined, as did the be-
havior of an organism in a stochastic environment. In the next two subsections, we
study our system numerically. We explore model behavior as a function of environ-
mental parameters in the forcing functions, and as a function of the life history pa-
rameter «, since this parameter tends to be highly variable within a species. We il-
lustrate model behavior with parameters appropriate for the marine mussel Mytilus
edulis (see Table 3); initial values not mentioned in the table are £(0) = 0.5 and
e(0} = 0.5, and the phase of the period with deterministic food fluctuations is
0 rad.

We assume an environment in which food levels vary either deterministically or
stochastically around f, = 0.5, which allows us to explore a maximum range of
fluctuation intensities. We wish to be able to compare in some systematic way
the results of the deterministic and stochastic simulations, and therefore calibrate
the stochastic intensity of food fluctuations, §1/2, to the deterministic amplitude a.
We set § = a’/r, so that, neglecting the effects of cut off of £ in the stochastic
case, the mean squared displacement of f from f, is similar with both types of
food variation. With periodically variable food, we consider fluctuations with a
period of a day, year and decade, which, relative to a mussel’s phystology, represent
a food density that is changing rapidly, moderately slowly or very slowly, For
stochastic food, we take the memory retention time t in stochastic simulations
equal to the period of the deterministic cycies, since this yields sets of deterministic
and stochastic runs in which the memory for previous food values operate on a
similar time scale. In addition, we study the effects of a really long retention time,
corresponding to a period of a century in our transformation, which may serve
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as a caricature of ctimatologically induced changes in food availability beyond an
organism’s life span,

1. PERrRIODIC FOOD

We now analyse dynamics in a periodically variabie food environment, and study
how the performance of mussels changes with the amplitude, and period of the fluc-
tuations, as well as with «, the partitioning coefficient of growth and reproduction.
Only two of the three periods studied, a ycar and a decade, have a significant ef-
fect on the performance of mussels. Daily fluctuations are so fast that from the
mussel’s point of view the environment is essentially stable. Regardless of the in-
tensity of the fluctuations, the scaled stored energy density e fluctuates minimally,
and consequently, growth and reproductive output with daily food fluctuations are
indistinguishable from production at the average, constant food level (resulis not
shown). Furthermore, daily fluctuations do not impair the mussel’s ability to sur-
vive. Equation (14) gives the period of fluctuation critical for long term survival.
With f, = 0.5, a mussel with « = 0.9 can withstand any fluctuation with a fluc-
tuation less than 12 days; a mussel with « = 0.1 can survive fluctuations with a
period less than 2 months.

Fluctuations with periods of a year or a decade do have a significant impact. We
demonstrated above that the ultimate Iength is proportional to the maximum stored
energy density in the limit cycle [see equation (9)]. In line with this, Fig. 3 shows
that mussels with variable food are almost always bigger than their conspecifics
at constant food. With an annual fluctuation [see Fig. 3(a)], the excepiions are
found in the bad periods during the earty years (this trend is most pronounced
when the phase is a half period-—simulations not shown). Also, the time to reach
a size arbirarily close to the ultimate size increases with amplitude. The fraction
of a period in which e is sufficiently high for growth declines in time, causing
the growth trajectory to Ratten off slowly, this trend being more prenounced at
higher amplitudes. Qualitatively similar results are obtained with a period of a
decade. Figure 3(b} and (c) show trends that are more pronounced than with annual
Nuctuations.

Organisms not enly grow bigger when there are large fluctuations in the food
environment, they also consume more food. A question of economic interest, e.g.,
in mariculture, is how the efficiency of biomass formation depends on fluctuations
in food supply. We express this efficiency in terms of a cumulative yield, defined
as the ratio of the amount of structure formed to the cumulative amount of food
consumed, and scale this yield to the yield at constant food. There is a subtle prob-
lem involved in this measure: it ignores the reserves, which may, in part, become
structure. Therefore, in comparisons with this cumulative yield measure, only in-
dividuals with an equal amount of stored energy should be considered. Scaled
cumulative yields show two (rends (results not shown). First, yields osciilate in
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Figure 3. Periodic food fluctuations stimulate growth. The period of the fluctuations is
() a year; {b) a decade with the simulations starting at the onset of the growth season;
and (c) a decade with the simulations starting at the onset of the bad season. The smooth
curve refers to growth at constant food (f = 0.5), and subsequent curves mark growth at
increasing amplitudes [(a) ranges from 0.1 1o 0.5 with 0.1 intervals]. growth curves end
when the organism starved to death. Parameters values are for the mussel Mytilus edulis
(see Table 3) with« = 0.5.
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Figure 4. Periodic food Auctustions enhance the reproductive output of organisms that
already commit relatively a large fraction of their resources to reproduction [(a), & = 0.F),
but reduce reproduction in organisms favering growth over repreduction; [(b), & = 0.9].
The smooth curve refers 10 reproduction at constant food (f = 0.5), and subsequent curves
mark growth at increasing wmplitudes [(a) ranges from 0.1 to 0.5 with 0.1 intervals] in an
annually fluchzating food environment: interrupted curves, some of them hardly distin-
guishable in the right panel, indicate that the organism starved to death. Parameters values
are appropriate to the mussel Mysifus edulis (see Table 3).

response to fluctations in food availability. Second, scaled cumulative yields are,
initially, higher with increasing amplitude, Later this trend is reversed, but not un-
til the organism has approached its ultimate size fairly closely. This implies that
food fiuctuations enhance the efficiency of biomass formation as long as there is
substantial growth.

Perhaps more important from an ecological perspective is how food fluctuations
affect reproductive output. As discussed in a previous section, food fluctations en-
hance the long-term reproduction of surviving mussels that have a relatively low
value for «, whereas fluctuations decrease the reproductive output of mussels with
a high value for . These trends emerge early, as Fig. 4(a) illustrates for a mussel
with a low « living in an environment with annually varying food. With a high «,
the trend is less conspicous since animals soon starve to death under those condi-
tions [see Fig. 4(b)). The figures also show that ¢ has a great effect on reproduction.
Mussels with a high « reproduce more than those of the same age with a low «.

The life span of mussels may decrease dramatically when the availability of food
fluctuates, especially when « is high {see Fig, 5). « specifies the partitioning of en-
ergy between somatic and reproductive tissues, and therefore determines the size
to which a mussel will grow. Since larger animals require more energy for mainte-
nance purposes, a higher value for « may imply a reduction in life span. The am-
plitude of the food fluctuations determines the level to which the energy reserves
will decline during the off season, and thus directly affects the survival potential of
a mussel, but it also indirectly affects the life span of a mussel through its stimulat-
ing effects on growth. The period of the fluctuations is also important because the
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Figure 5. The life span of organisms is reduced by the amplitude of food fluctuations
and by «; a low value for x implies an individual that commits a relatively large fraction of
resources to reproduction and a small fraction to growth. Parameters values are appropriate
1> the mussel Mytifus edulis in an annually variable food enviconment (see Table 3).

butfering capacity of the storage compartment declines when the period increases.
Finally, the timing of birth may be crucially important, as is illustrated by Fig. 3(b)
and (c). These figures show simulations when the period of the fluctuations is ten
years, which is such a long period that the dynamics of stored energy closely fol-
low the dynamics of food. Mussels that started their settled life at the onset of the
good period will survive for at least 5 years. They are born into an environment that
initially becomes increasingly hospitable, and then grow to a large size, especially
at high values for &, They therefore quickly die when food becomes scarce, On the
other hand, mussels that settle at the onset of the bad spell remain small, which,
except at the highest amplitudes, enables them to survive until the next bad period.
They thus become older than their conspecifics that start life with a feast.

2. STOCHASTIC FOoOD

We again study the behavior of the model as a function of the partitioning coeffi-
cient « and as a function of environmental variation, which in the case of stochasti-
cally fluctuating food is characterized by two parameters: the intensity of the food
luctuations and the memory retention time of previous food levels. We first illus-
trate model behavior with sample realizations of food and storage dynamics, and
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then examine expected production and survival patterns (a 1000 realizations are
used to calculate expected values),

Figure 6(a) and (c) show samples of environments in which food fluctuates with a
moderate intensity and with a memory retention time of a day or a year. Figure 6(b)
and (d) show corresponding dynamics of the scaled density of energy reserves in
a mussel. Dynamics of energy reserves are smoother than those of food. Reserves
buffer changes in the food environment, and changes with the highest frequency
are the ones that are most effectively buffered. As a result, the mussel experiences
an environment in which food fluctuates with a memory retention time of a day as
it were relatively stable. With higher memory retention times, however, the scaled
density of energy reserves follows relatively closely the scaled food density; with
a memory retention time of a century, the trends of both densities are essentially
the same (results not shown). Figure 6(a} and (b) also indicate that the buffer-
ing capacity is a function of size. The buffering capacity increases in time, since
the musse! has grown over time (results not shown), resulting in slower storage
dynamics [¢f. equation (1)].

On average, the size and cumulative reproductive effort of mussels increase with
the intensity of food fluctuations (see Fig. 7). Organisms in variable food environ-
ments tend to be bigger and to reproduce more than their conspecifics in a constant
food environment. This increase is also a function of the memory retention time
of the fluctuations in food supply. The increase in production with variable food
is negligibly small when the memory retention time is a day (results not shown),
but with a retention time of a year (results not shown) or a decade (see Fig. 7) the
increase is substantial. With a memory retention time of a decade, at the highest
fluctuation intensity examined, the average length after 20 years is about 40% per-
cent higher and reproductive output is more than twice as high as production at
constant food. However, with even higher memory retention times, this increase of
production with fluctuation intensity becomes less pronounced. In an environment
in which food fluctuates with a memory retention time of a century, the percentage
of increase is 10% and 25% for length and cumulative reproduction, respectively
(results not shown).

Thus, growth and reproduction are predicted to be highest in environments where
food levels vary strongly but slowly. One reason for this is that high levels of
food densities become more common at higher fluctuation intensities. This causes
mussels to be fat for occasional periods, during which they commit extra energy to
growth. Because organisms cannot shrink, they become bigger in a variable food
environment, and larger organisms reproduce more. This mechanism for enhanced
production is increasingly impertant with increasing memory retention times. With
a low memory retention time, extremes in food densities do not last long and are
thus effectively buffered by the energy reserves. With a high memory retention
timme, reserve levels track the availability of food, and extreme food levels translate
into high reserve levels. When the memory retention time is substantially higher
than the lifespan, however, the mussel experiences relatively little variation in food
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Figure 6. An organisim experiences changes in its food environment through changes in
its reserves, In a stochastic environment with 2 memory retention time of 1 day, the scaled
food density (a) is much more volatile than the scaled stored energy density (b); with a
memory retention time of | year, the scaled food density (c) 1s more closely followed
by the scaled stored energy density (d). Parameters values are appropriate to the mussel

Mytilus edilis (sec Table 3y with« = 0.5and § = 0.09¢ ).
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Figure 7. The average size (a) and reproduction (b) of surviving organisms increases with
the intensity of stochastic feod fluctuations. From top to bottom and in sequential order, the
curves represent average production with § = 0.025y 1, 0.016y~!, 0.009y~1, 0.004 1,
0.001y " and 0y ™!, respectively. Parameters values are appropriate to the mussel Mytilus
edulis (see Table 3y with x = 0.5 and v = 10y.

availability during its life time; production patterns are then relatively close (o those
observed at constant tood conditions,

There is another mechanism explaining why average size and reproduction in-
crease with the intensity and memory retention time of food fluctuations. When
the value of these two parameters increase, the likelihood of persistently low levels
of food and energy reserves, and thus starvation, increase as well. Survivors are
likely to have experienced the relatively better food environments. Therefore, the
scaled density of energy reserves in surviving mussels tends to increase with time.
At the highest fluctuation intensity, the upward drift in reserve levels after 20 years
ranges from zero with a retention time of a day to 40% with a memory retention
time of a decade. Those elevated levels of energy availability evidently support
higher levels of average growth and reproduction.

The probability of survival to any given age depends on the intensity and memory
retention time of the food fluctuations (see Fig. 8). Survival probabilities decline
when food fluctuations become more intense. The effect of the memory retention
time on survival is more complex. The survival probability to any given age shows
a minimum at some intermediate memory retention time. With a memory reten-
tion time of a day, death through starvation is a sporadic event, even at the highest
fluctuation intensity (results not shown). At the highest intensity with a memory
retention time of a year, however, none of the 1000 realizations included an or-
ganism that survived for 20 years [see Fig. 8(a)]. With higher memory retention
times, the odds for survival improve [see Fig. 8(b)], and mortality is not an im-
portant issue when the memory retention stretches well beyond the life span of the
organism [see Fig. 8(c}]. The reasor for this is that the organism is then unlikely
to experience large environmental change during its life time. We note that the
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Figure 8. The probability of survival 10 a given age in a stochastically variable food en-
vironment declities with the intensity of the foed fluctuations and depends on the memory
retention time of the environment for previcus foed levels. The memory retention fime
7 is (a) ly, (b} 10y or (c) 10Dy (with ¥ = 14, survival was 100%). In all panels, the
curves represent survival probabilities with, from bottom to top and in sequential order,
5 =025t7, 016771, 0.09r 1, 0.04r— !, respectively. With § = 0.01t~!, mortality
is nil. Parameters values are appropriate to the mussel Myrifus edulis (see Table 3) with
x =05

survival probability depends on «, because organisms with a low value of « remain
relatively small and are better able to survive periods of starvation.

So far, we have discussed average cumulative production of organisms that man-
aged to survive in a stochastically variable food environment, that is, the average
cumulative production of survivors. The question remains hew fluctuations in food
availability affect the expected future cumulative production of a newborn. Calcu-
lations of those measures include the final size and cumulative reproduction output
of dead mussels. At the lower fluctuation intensities, mortality remains of mi-
nor importance during the time spanned by the sirulation, and thus the average
production of survivors of a given age is close to the expected future cumulative
production of a newborn once it has reached the same age (see Fig. 9). At the
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Figure 3. The expected growth (a) and reproduction (b} to a given age are stongly reduced
by intense stochastic food Auctuatiens because of mortality due to starvation, but mild
food fluctuations may stimulate production. The dotted curve in both panels represent
production 3¢ constant food, and the solid curves represent production with, in sequential
order and from bottom to top, § = .25y~ 0,16y~ 0.09y~!, 0.04y~! and 0.01y~!,
respectively. Parameters values are appropriate (o the mussel Mytitus edufis (see Table 3}
withe =0.5and r = |y

higher fluctuation intensities, however, the expected future cumulative production
of a newborn tends to stabilize as time progresses, since the number of survivors
declines (see Figs 8 and 9). Then, the expected future size of a newhorn remains
substantially smaller than with constant food, although the average size of sur-
viving mussels increases with fluctuation intensities, Even more dramatic is the
decline in the expected future cumulative reproduction of a newborn with increas-
ing fluctuation intensities. Whereas individuals in a stable food environment keep
producing off-spring at a steady rate, the expected future reproduction rate of a
newborn declines in time in an intensely variable food environment (see Fig. 9)
as mortality takes it toll. Then, the expected future cumulative reproductive out-
put converges to lifetime production as the probability of survivatl to a given age
approaches zero. Those trends of expected future reproduction and growth of new-
borns no longer hold with very long memory retention times, Mortality then has
relatively little impact, even at the higher fluctuation densities,

DISCUSSION

The model makes the following predictions about (average) growth and mortality
in a variable environment. QOrganisms grow bigger in a variable food environment
than in a constant environmeni with similar average food availability. Ultimate size
increases with the amplitude and pericd of deterministic food cycles, and with the
intensity and memory retention time of stochastic food fluctnations. In variable
food environments, organisms grow (o a size related to the peaks in food availabil-
ity, rather than to the mean. Food fluctuations may lead to death from starvation,
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the likelihood of which increases with the strength and duration of the fluctua-
tions. Two processes are involved here: starvation requires a sustained period of
low food, but in addition the larger individuals that are present in a fluctuating en-
vironment have greater maintenance costs than their smaller counterparts living at
constant food and are hence particularly vulnerable to food stress. These mecha-
nisms of starvation are also in effect at the population level when organisms are
able to deplete their food source (Kooijman er ., 1989).

Model predictions on growth in periodic food environments are in line with
observations backing Bergmann’s rule. Bergmann's rule states that the size of
homeothermic organisms increases with latitude; this trend is also common for
ectotherms [see e.g., Brown and Lomolino (1998, pp. 488-493)]. Usually, this
trend is related to some temperature measure, such as summer maxima or seasonal
fluctuations. Food availability increasing with latitude has also been suggested as
possible explanation (Kooijman, 2000, pp. 233-234). The model predicts that there
is a phenotypical trend showing increasing body size with stronger seasonal food
fluctuations. Because food availability often covaries with temperature, our results
suggest that organisms become bigger with increasing latitude due to an increasing
seasonal variability in food.

The predicted effects of food fluctuations on reproduction are more complex. In
a periodically variable food environment, reproduction may increase or decrease
with the amplitude of the fluctvattons, depending on «, the parameter character-
izing the partitioning of energy between somatic and reproductive tissues. Indi-
viduals with a high value for ¥ commit a relative large fraction of their resources
to growth, whereas individuals with a low vatue lor « give a higher priority to
reproduction. High-x individuals reproduce less with increasing amplitude, but
low-x individuals reproduce more. Although any organism becomes bigger in a
periodically variable food environment, and thus feeds at a higher rate, only low-x
individuals translate this extra food intake {partly) into off-spring. High-# individ-
uals need this extra food intake for maintenance requirements, which also increase
with size. Because of the strong size dependence of reproductive output, stochas-
tic variation in the food environment normally leads to enhanced reproduction by
individuals that survive the fluctuations. However, in most cases, this increase is
accompanied by a still stronger decrease in survival probabilities, causing the ex-
pected life time reproduction to decline [see Fig. 9(b)].

The dependency of reproduction patterns on « in periodic food environments is
of particular interest as x is an adaptive parameter whose value for any particular
organism may reflect the intensity of the foed fluctuations in a particular environ-
ment. The model suggests that a low value for « would represent a foed environ-
ment that fluctuates relatively strongly. Also, survival decreases with increasing «.
Thus, individuals in a highly variable food environment are likely to evolve towards
a lower «, a higher reproductive rate and a lower physiological potential for growth
than their conspecifics in a [ess variable food environment. This is in agreement
with many data showing increasing clutch sizes in birds and litter sizes in mammals
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with increasing lattitude (Brown and Lomolino, 1998). However, the genotypical
decrease of growth potential that accompanies a lower value of ¥ would diminish
the above described increase in size due to higher food maxima, causing this trend
to be less pronounced.

There are unresolved issues with the rules for partitioning of energy in the model.
In general, the parameter ¥ may be a function of size; for example, the proportion
of assimilate assigned to reproduction by the water flea Daphnia pulex increases
with size (Paloheimo et al., 1982). Recently, it has shown that size dependence in
« is consistent with the other assumptions of his DEB model (Kooijman, 2000),
but the effects on dynamics even in a constant environment have not been worked
out. Without restrictions on the mathematical form for the size dependence, there
is scope for a very wide repertoire of dynamic behavior; further progress would he
greatly helped by the development of a mechanistic representation of how an or-
ganism’s size affects competition for resources between somatic and reproductive
tissue.

An equally serious issue s that organisms may change the energy partitioning
rules in response to environmental cues that covary with current or anticipated food
availability. For example, photoperiod atfects reproduction during starvation in the
snail Lymnea stagnalis; in summer starving animals continue to commit energy (o
reproduction, but they cut down on this commitment in spring when food tends to
be relatively scarce (Zonneveld and Kooijman, 1989). While the precise changes
in the expression of the x-rule are likely to be species specific, an organism that
reduces reproduction when there are insufficient resources for growth in a variable
environment might be expected to live longer than one that continues to reproduce,
since the former organism depletes energy reserves more slowly during periods of
starvation.

This observation has led to a variant (here called variant 1) of the x-rule model,
applicable to organisms that cease reproduction when they do not grow
(Zonneveld and Kooijman, 1989). We briefly investigated the implications of this
modified « -rule model, though we made a few technical changes to make the model
mathematically fully consistent. We also investigated a second variant that allows
organisms, which grow and reproduce as in the classic formulation, to utilize all
of their reserves before dying of starvation, in contrast to the classic formulation
and variant 1, both of which assume that an organism dies when the utilization flux
in Fig. 1 is insufficient to meet maintenance costs, With our default parameter set
and deterministic food fluctuating with a period of one year, the classic version
and variant 1 yield almost indistinguishable growth and reproduction patterns in a
pericdic food environment. Survival patterns with variant 1 are also similar to the
patterns with the classic formulation, which rebuis the intuition articulated above,
but is consistent with a previous study of starvation times (Nisbet et al., 1996). In
sharp contrast, however, if the organism is able to access all reserves in order to
meet maintenance (variant 2), its resistance to starvation is greally increased, and
only in extremely fluctuating food environments does the organism starve to death,
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The results from the second variant in the preceding paragraph must be inter-
preted with considerable caution. The assumptions of the x-rule model have a
strong mechanistic basis and cannot he changed in an ad hoc manner without tak-
ing care (o consider the implications. In particular, the energy utilization flux is
derived from assumptions on reserve homeostasis, and an assumption modifying
the utilization of energy during starvation must take account of the costs of such a
change and should have strong empirical support. Currently, we lack an assump-
tion with these qualities.

We have shown how a variable food environment affects the survival and pro-
duction of individual organisms that grow in accordance with the « rule model. A
variable food supply stimulates growth, increases mortality and may enhance re-
production, depending on the life history of an organism. More work is needed to
investigate the impact of food fluctuations on the evolution of life history param-
cters and on population dynamics. The work reported in the present paper gives
strong guidance on the likely effects on growth and reproduction, and highlights
the need for better mechanistic models of mortality.

APPENDIX

In this appendix, we derive the long-term dynamics of the state variables as-
suming deterministic variation in the environment, in which the scaled functional
response fluctuates in a simple periodic fashion. We also show that, in most cases,
if an organism is ultimately viable, it can survive the transient periods of starvation
that it experienced earlier in life.

The dynamics of the scaled density of energy reserves e and structural biovolume
V are given by

de

- vV TIf(0) — e(t)), (A1)

AV @eld)Vi() — mgV{).
dt e(ty+ g

, (A2)

where f is the scaled functional response, v is the energy conductance rate, m is
the maintenance rate coefficient, and g is the energy investment ratio.

The dynamics of e are first order and linear in e, and can thus be solved with
standard methods, provided that the organism survives to time . With ¢(0) being
the initial value for e(z), the integral solution reads as

e(t) = exp[—v[ V_m(s)ds]
0

(e((]) +[ f(r)vVﬂH(s)cxp[v f V—US(r)dr]ds). (A3}
0

[+
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Since
s S diexplv f§ V=13 (r)dr])
vV (s) exp vf V13 (rdr | = 7 , (Ad)
i} 5

equation (A3) is equivalent to
13 ! X
e(r) =exp|:-uf V']”(s)ds] (e{())+f f(r)d(exp[uf V‘”“(r)dr])).
0 y 0
(A5)

Integration by parts yields

e(t) = f(t) + cxp[—-v f v"ff‘(s)ds]
1]

(e(UJ — f( —-f f() v.mp[uflT V—lfﬁ(r)dr]ds). (AB)
0 0

Further analysis requires a specification of f(z). In particular, we are interested
in the consequences of a sinuscidically fluctuating scaled food density with angular
frequency w, amplitude g and mean value f,. The second integral in equation (A6),
A= fnr fl(s)exp[v f; V=173 (r)dr|ds, can now be evaluated:

t 5
A =awf cos{ws) exp[vf V"”(r}dr]ds
1] 3]

aw f* T
= -2—[ (explrwt] +exp[—:wr})cxp|:v[ V‘”S(r)er
0 i)

= @('[ exp[[l(tw + vV‘”"(r))dr]ds
2 \Jo 0
+[ cxp[[. (—tw + uV‘”“(r})dr:Ids)
0 0

_aw ([exp[fg—(xm + vV"”(r))dr]]’ n [exp[f(';(:w + uV"”(r})dr]]')
0

2 tw + vV -3 (s) o —tw + vV -1/3(5)

After some tedious algebra we get

113 ‘
A= cm;(—-_uv”—H + exp[u / V"'”(.f)ds:l
w? + (vV, 7 32 0

wsinws + vV 13 cos e
w? + (LV=17())? '

(A7)
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in which V;, = V{0) is the structural body volume at birth, Substituting this result
back into equation (A6) yields

-1/3 .
) = fu+ (e((}) —ft %) exp[—uf V-'f-‘(s)ds]
’ 1]

o’ + vV,
Vi
+;2(sin - w cos wr). (AB)
1+ (a)l«"'f-‘(r]) U
L

We are now able to determine the long-term dynamics of € and V. Because v
and V are positive and bounded above, the middle term in equation (A8) fades
with time, and since V'/* is a non-decreasing function of time, the other two terms
represent a sinusoid with a non-increasing amplitude (and non-decreasing period).
The highest scaled energy density in a cycte of this sinusoid, €5.,, decreases as the
organism grows. This implies that growth eventually ceases, since V is bounded
through e [see equation (A2)]. An organism will continue to grow provided V173 <
emaxv/mg, and has a maximum volumetric length given by V13 = e _v/mg for
some e,,,,. Now assume some cycle n in which the organism reaches its maximum
volumetric length supported by that cycle, V,,”:"; then anf:* = emax(M¥v/mg. If the
organism continues to grow in some later cycle o, then we must have ep,.(0) >
emax{n). But we already know that eq(0) < emax{n}. Hence, growth is bounded,
implying that the dynamics of ¢ will approach the limit cycle

- u .
e(t) = fu+ — sin{wt + ¢), (A9)
pisn
H(=57)
where ¢ = tan™! %m is a measure (in radians} of the extent to which fluctuations

*

in e ultimately lag behind f. Then, e} __
in the limit cycle, and V'/* = &, v/mg.

It is highly likely that if an organism is able to survive the limit cycle, it is also
able to survive the transient. It is sufficient to assume that (0) lies within the range
of possible values for f(¢), which is true in the x-rule model, for instance, when
off-spring experiences a food environment similar to that of the mother (the model
assumes that hatchlings have the same energy density as the mother at the time
of egg laying). The model assumes that an organism is viable when the energy
mobilized from the reserves is sufficient to meet somatic maintenance demands,
that is, when

= £max the highest scaled energy density

VP = 5@. (A10)
kmg

in which « is the parameter partitioning reserves between somatic and reproduc-
. . . 1/3 . . .
tive tissues. With V,;° = v/mg, the maximum volumetric length an organism can
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VI

atfain, equation (A10) implies that death is inevitable when e(f) = while

m

€ < 0, that is, while V'/(r) > L“’,:'ri {see equation (A1)]. Because x € (0, 1]
and f(t) < f, +a = fua an organism is nonviable when V13(t) > fux vl
But with a periodically variable scaled food density V173 () < V13 = g, V}*

- V,,',/"‘ Hence, organisms that are viable in the limit cycle, are alse viable during

transient dynamics.
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Abstract

Herbivores may grow with nutrient or energy limitation, depending on foed abundance and the chemical
composition of their food. We present a model that describes herbivore growth as a continuous function of
two limiting factors. This function uses the synthesizing unit concept, has the hyperbolic Monod model as a
limiting case, and has the same number of parameters as the Monod model coupled to Liebig’s discontinuous
minimum rule. We use the model to explore nutrient-limited herbivore growth in a closed system with algae,
Daphnia and phosphorus as the limiting nutrient. Phosphorus in algae may influence Daphnia growth, but this
influence changes in time and is most pronounced when algae and Daphria populations show large amplifude
cycles. Relative to classic models that only consider food quantity as a determinant of Daphria growth,
our model shows richer dynamical behavior. In addition to the standard positive equilibrium, which may
be stable or unstable depending on mutrient availability, 2 new positive equilibrium may arise in our model
when mortality rates are relatively high. This equilibrium is unstable and reduces the likelihood of long term

persistence of Daphnie in the system.
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1 Introduction

Plants and algae have highly variable nutrient contents. Because new herbivore biomass is produced
with a tightly controlled elemental composition, a herbivore may experience energy or nutrient
limitation, depending on the abundance and composition of its food. Recently, this problem has
attracted considerable attention from aquatic and terrestrial ecologists, as it is believed that the
elemental composition of primary producers relative to the stoichiometric requirements of herbivores
underlies major aspects of community organization and dynamics [1, 11, 8, 7]. We develop a new
model describing herbivore growth with two potentially limiting compounds, and illustrate maodel
behavior for a system with Daphnie and phosphorus limited algae. Recent evidence shows that
phosphorus limited Daphnia growth can be induced in laboratory cultures [28, 27, 3] and observed
in situ [4, 7].

Traditionally, models describing the dynamics of plant and herbivore populations use a single
currency, usually carbon, to describe the growth of herbivores (see e.g. [21] and references therein).
An tmplicit assumption is that food quantity rather than its composition influences herbivore growth.
When food composition becomes an issue, Liebig’s minimum rule is usually invoked [26, 10, 1, 16].
The minimum rule asserts that only one compound can be truly limiting at any particular time,
with the consequence that an organism may live in a borderline environment in which the limiting
compound switches continually. Having a switch in a model is mathematically inconvenient and also
implies that physiological regulation systems are unduly taxed in borderline environments. Near the
switch, the minimum rule cannot describe growth realistically, and thus it would be advantageous
to have an equation describing growth as a continuous function of multiple limiting factors.

Drawing on recent advances in biochemistry {13, 14], we present a model of synthesizing units
with which the effects of multiple limiting compounds can be described. Synthesizing units are
‘servers’ that handle a potentially wide range of limiting compounds and form one or more products.
We first discuss and illustrate the qualities of a synthesizing unit by implementing the concept in
the simple Monod model [19], which is also the routine choice in previous models implementing the
minimum rule (see e.g. [10]). We then incorporate the synthesizing unit concept in a model for
aquatic producers (algae) and consumers (Daphnia) with producers growing according to Droop [5)
and consuiners feeding with a type II functional response. We explore the dynamics of this system

using a range of natural parameter values, and identify conditions under which phosphorus in food
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may strongly influence Daphnia growth.

2 Synthesizing Units

A synthcesizing unit converts substrates into products while meeting the stoichiometric requirements
for product formation. An enzyme is an obvious example of a synthesizing unit, but we have also
in mind an abstract representation of the biomass producing machinery in an organism, in which
’substrates’ are components in food and the ‘product’ is biomass. It is this latier picture that we will
use later in modeling the biomass synthesis rate of Daphnia. In this section we outline the theory of
a synthesizing unit and compare its dynamics to the Monod model with a minimum rule.

A synthesizing unit can handle an arbitrarily large number of substrates and products, but here
we restrict ourselves to two different substrates and one product - see [13, 14] for a more exhanstive
presentation. We consider a synthesizing unit with n; binding sites for substrate z, and n, binding
sites for substrate z2. The synthesizing unit is said to be in its binding stage if one or more of its
binding sites are empty; the production stage starts with the occupation of all sites and ends with the
release of products. We assume that substrate particles arrive at the binding sites of the synthesizing
unit according to a Poisson process, and that the binding sites operate independently. The probability
that an arriving substrate particle attaches to a binding site suitable for that substrate is constant,
provided the site is empty (otherwise, the binding probability is zero). If binding and production
are irreversible events, and the production period is exponentially distributed with mean j,;l, it can
be shown that the average rate at which the synthesizing units deliver product, J, is approximately

[13, 14]
1

1 n n J AR
_— [2% L¥ S 4§
Fm + J1 + Ja (nl + 712)

J= (1)

in which J; and J; are the average rate at which the synthesizing unit binds x; and x», respectively.
Jon is the maximum rate at which a synthesizing unit can deliver product.

When one of the substrate fluxes is very high, the reciprocal of this flux and the term in paren-
theses in the denominator is very small and, consequently, equation 1 reduces to a simple hyperbolic
expression. Thus, Monod’s model [19], which has the same functional form as the type II functional

response, is a special case of the synthesizing unit concept. However, rates in the Monod model are

usually expressed in terms of the substrate concentration rather than its flux. If concentrations are
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proportional to fluxes, the synthesizing unit concept provides a modeling framework that is more
general than the Monod model. Later in this paper we use flux measures in describing assimilation
rates.

Monod’s model frequently serves as a framework for Liebig’s minimum rule, which with two

potentially limiting compounds can be written as [10):

. 1
J = min ITom Lo {2}
Jin J1 Im Ju

where ‘min’ specifies that the production rate is the lower value of the two ratios. In homogeneous
environments, concentrations may be substituted for the flux measures in 2; then, the conventional
half saturation constants are proportional to nyJy, and rnodi,.

Figure 1 illustrates that production with synthesizing units changes smoothly and continuously
as the dominant limiting factor changes. The lines almost parallel to the axes in Figure la show
convergence to classic Monod dynamics as the flux of one compound inecreases; this convergence
is especially rapid when the flux of the most limiting factor is relatively low. Thus, the range of
concentrations over which two compounds simultaneously and substantially limit the production
rate may be narrow. Figure 1b shows that the synthesizing unit model nicely fits data generated
by the Monod model with minimum rule. Thus, the credit that the minimum rule often gets due
to its excellent fits of experimental data (see e.g. [5]) carries over to the synthesizing unit concept
{however parameter values do not carry over and require re-estimation}.

In the context of synthesizing units, the previously unambiguous term ‘the limiting factor’ requires
redefinition, since any substrate, irrespective of its abundance, makes some contribution to the
production rate. However, one substrate is likely to have a sironger limiting effect than the other,
and it is convenient to define a dominant limiting substrate or most limiting compound. We say that
substrate =1 is the dominant limiting substrate when n,/ J > no / Jo. Then, it takes more time for
the synthesizing unit to bind the required number of copies of substrate z; than to bind the required

number of copies substrate 5.

3 Producer and Consumer Dynamics

We now consider a system containing a producer and a consumer and assume that the system is

closed for nutrients and biomass. We assume that one nutrient always limits producer growth, and

o
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call this simply ‘the nutrient’; other nutrients and light energy are assumed to be abundant. We also
assume that nutrient in dead biomass and feces is instantanecusly remineralized, and that any free
nutrient is immediately taken up by the producer.

For producers, we follow the distinction that Kooijman makes between ‘structure’ and ‘reserves’
[14], and assume that the mass of producer consists of nutrient reserves and structural biomass,
each having a constant but different chemical composition (the biomass composition of producers
may change as the amount of reserves relative to structure changes}. This assumption specifies
the chemical composition of producer biomass, and we cannot further assign particular classes of
molecules to either reserves or structure. Of course, our classification should overlap substantially
with what is usually understood as reserves and structure, but subtleties beyond the scope of this
paper do cxist - see [22]. Furthermore, we assume a constant carbon to nutrient ratio in consumers,
which may vary mildly in practice [3]. Thus, the system has three state variables representing the
structure of the producer, the nutrient reserves of the producer and the biomass of the consumer.
Figure 2 illustrates this system with Daphnia as the consumer, alga as the producer, and phosphorus
as the limiting nutrient.

We assume that the producer grows according to Droop [5, 14], and that the specific feeding rate
of the consumer, j, follows a type Il functional response. The dynamics of the density of producer

structure X, (in C moles of biomass) are

dXp . p 3L : IpmXp
- = FpmXyp (1 ot m) — jpXe Jp ma (3)

where jpm is the maximum specific feeding rate, A the half saturation constant of the consumer,

Tpm the maximum specific growth rate of producers, n, the nutrient to carbon ratio in producer
structure, and m the producer nutrient reserve density, defined as the total amount of nutrient in
the reserves per unit of producer structure. The quantity n, 4+ m is commonly referred to as the cell
quota of the producer, and n, as the minimum cell quota. We assume that all rates scale directly
with biomass, and that consumers have a per capita mortality rate, h, that is independent of their
age. Then, h equals the specific rate at which biomass is lost due to mortality [21]. If the specific
consumer biomass synthesis rate 7. is some function of j, and m to be specified later, then the

dynamics of the consumer density is

dt

= (Felipym) = h) Xe. (4)

6
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Because the system is closed for nutrients and free nutrients are instantaneously taken up by pro-
ducers, the nutrient reserve density follows from the balance equation:

N, _
m= ( tot chXc) — iy, (5)
P

in which n, the nutrient to carbon ratio in consumer structure, and Ny, is the density of total
nutrient in the system.

Consumers assimilate nutrients and carbon from producer structure and reserves, and we now
assume that synthesizing units describe the rate at which consumers synthesize biomass. Nutrient
reserves may be devoid of carbon, for instance, when polyphosphates are a major component of
nutrient reserves. However, nutrient reserves may contain carbon when, for instance, the limiting
nutrient is nitrogen and the producer stores this element in part in storage protein. Producer struc-
ture contains both nutrients and carbon. We assume that the synthesizing unit dees not discriminate
between producer structure and reserves with regard to the origin of carbon and nutrients. We ignore
subtle differences in energetic overheads involved in assimilating carbon or nutrients from producer
structure and reserves, and assume that the consumer assimilates the two elements with a constant
efficiency.

We have two choices for implementing maintenance. We can either debit this expenditure from
the assimilation fluxes before biomass is formed, or add a loss term accounting for the respiration of
biomass for maintenance purposes. Both options have conceptual problems, essentially due to the
fact we do not consider energy reserves in consumers (if considered, energy reserves would allow for
a variable carbon to nutrient ratio in consumers). We will address these issues in a future paper; for
this paper, we choose the second option, which is the simpler and commoner of the two. Then, the
maintenance and mortality rates add to a single loss term.

Using equation 1, we can now write down the expression for the specific biomass synthesis rate of
the consumers. The arrival ftux of producer structure to the synthesizing unit is proportional to the
feeding rate, and the arrival flux of nutrient reserves is proportional to the product of feeding rate
and nutrient reserve density. Because producer structure and nutrient reserves may both contain
nutrients and carbon, the arrival fluxes of nutrients and carbon are weighted sums of j, and My,
in which the weights consist of parameters representing stoichiometric requirements, assimilation
efficiencies and growth overheads. To avoid the introduction of a large number of symbols, we

combine those parameters in weighting factors and call them yield coefficients. A yield coefficient

7
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defines how much biomass (in moles of carbon) a consumer can make from a mole of carbon or

nutrient in producer structure or nutrient reserves. The specific consumer biomass synthesis rate is

Te = (f‘p_nl; + ({gp2 + ¥m2m)3p) ™ + (g + 3p1)dp) ™" — ((yp1 + p2 + ez + ynl))jp)—l)vl -k,

(6)
in which k is the maintenance rate, forn 18 the maximum specific consumer biomass synthesis rate,
yp1 and 3,y are the yield coefficients for assimilating nutrients and carbon from producer structure,
and yn) and yp» are the yield coefficients for assimilating nutrients and carbon from the nutrient
reserves. All yields are nonnegative and mass balance constraints dictate that y, < ny/ne (when
Yp1 = 7tp/n, all nutrients from producer structure can potentially be assimilated); ype < 1 (when
yp2 = 1, all carbon from producer structure can be potentially assimilated and there is no growth
overhead); yn) < 1/n, (when g, = 1/n,, all nutrients from producer nutrient reserves can potentially
be assimilated); ynz < 1 (when yp; = 1, all carbon from producer nutrient reserves can be potentially
assimilated and there is no growth overhead).

In order to visualize the limiting contribution of nutrients to the rate at which consumers syn-
thesize biomass, we use the concept of the dominant limiting factor defined in the previous section.
Nutrients are the dominant limiting factor for consumer biomass synthesis when (y;2 + ynomn)jp >
(Yp1 + yn171) 7. We define the ratio of these two expressions as the limitation coefficient, L,

e YL
I = Ypz + Un2 ] (7)
ypl + Y1

When L > 1, nutrients are the dominant limiting factor for consumer biomass synthesis.

4 Daphnids and Algae with low Phosphorus

We illustrate the behavior of the system with parameter values that are reasonable for a phosphorus
limited system with algae as producers and with daphnids as consumers (see Table 1}. Some param-
eters show a large natural variability, notably the total phosphorus content of the system, the P to
C ratio in algal structure, and the mortality rate in Dephnia populations, and we therefore examine
the dynamics for a range of values. We keep the algal carrying capacity, which equals the total
phosphorus density divided by the P to C ratio in algal structure, below 200 uM carbon (roughly
equaling 2.5 mg C. 17!}, and thus explere a range that covers oligotrophic and eutrophic environ-

ments. For simplicity, we assume that algal phosphorus reserves lack carbon, and that daphnids can,
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if needed, assimilate all the phosphorus in their food with a 100% efficiency, implying that the yield
coefficients for assimilating phosphorus are determined by the P to C ratios in algal structure and
Daphnia biomass. We also assume that the maximum specific biomass synthesis rate in Daphnia is
very large and set 1/7,, equal to zero. Thus, the growth potential of Daphnia is bounded through
the feeding rather than the assimilation process.

A natural starting point for our analysis is to ignore the potential contribution of phosphorus
to the Daphnia biomass synthesis rate. Then, equation 6 reduces to 7. = ypujp, and the system
is similar to the classic Rosenzweig-MacArthur model ({24]), except that it replaces the constant
carrying capacity {{(N:/np) in the logistic equation for algal growth with a variable factor that
depends on consumer density (namely, (N —n.X.)/n,). Despite this difference, our model ignoring
the contribution of food phosphorus content on Daphnie growth has the same qualitative behavior as
the Rosenzweig-MacArthur model. The phase plane plot in Figure 3a shows a hump shaped isocline
for algae, and a straight vertical isocline for Daphnia (the isocline for algae shows the combinations
of algal and Daphnia densities at which the algal density does not change; similarly, the isocline
for Dephnie shows the non-growth combinations for Daphniaz). The intercept of the two isoclines
marks the viable or positive equilibrium, at which both populations coexist at constant densities
(other equilibria are at (0,0) - no algae, no daphnids; and ({(Nyet/np,0) - algae at carrying capacity,
no daphnids). This viable equilibrium is stable at relatively low total phosphorus densities, and
unstable at high total phosphorus densities. At these high total phosphorus densities, the densities
of algae and Daphnia fluctuate in limit cycles with amplitudes that become progressively larger with
increasing total phosphorus densities, a phenomenon called the ‘paradox of enrichment’.

If we now add the possibility of phosphorus limited Daphnia growth, hump shaped isoclines
for both algae and Daphnia arise. These isoclines may fail to cross, or may cross once or twice (see
Figure 3). With a single crossing, the model dynamics are qualitatively similar to the simplified model
version discussed above (see Figure 3b}. The viable equilibrium may be stable or unstable, depending
on the total phosphorus density, and the model shows the paradox of enrichment. Furthermore, as
in the simplified model, Daphnia can always persist in this system, provided a viable equilibrium
exists.

With a single viable equilibrium, the dynamics of algae and Daphnic may show population cycles

like those in simple producer-consumer models (see Figure 4). With similar parameter values to
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those in Figure 3b, population cycles are relatively large (see 4¢). Relative to the simplified model
ignoring the contribution of phosphorus to Dephnia growth, the limit cycles show somewhat smaller
amplitudes for the Daphnie density and somewhat higher peaks in the algal density (results not
shown). Since Daphnia growth is restricted by algal phosphorus content, the control that Daphnia
can exert on algal growth is less than in the simplified model and the so called ‘prey escape cycles’
are more pronounced.

A reduction in the total phosphorus density reduces the cycle amplitudes(see Figure 4a and c).
With a relatively high total phosphorus density of 0.45uM P, the limitation coefficient is periodically
greater than 1 (see Figure 4d), implying that for part of the time phosphorus is the dominant limiting
compound for Daphnia biomass synthesis. Figure 4¢ and d show that phosphorus limitation is
especially prevalent during periods of very low algal densities. With a relatively low total phosphorus
density of 0.30uM P, however, the contribution from phosphorus in determining the biomass synthesis
rate of Daphnia is insignificant at any time (see Figure 4b). Loss rates also affect the prevalence of
phosphorus limitation for Daphnia, as low maintenance and mortality rates lead to large amplitude
cycles and hence favor periodical bouts of relatively strong phosphorus limited Daphnia growth
{results not shown}. In general, factors that tend to destabilize the system also emphasize periods
with strong phosphorus limited conditions for Daphnia.

The algae and Daphnia isoclines may also cross twice (see Figure 3c), or they may fail to cross
(see Figure 3d). In the latter case, the Daphnie loss rates are too high for coexistence. Daphnia
cannot persist and the algae grow to their carrying capacity. The former case is more interesting
as it yiclds two viable equilibria (see Figure 3c), and it arises when the combined mortality and
maintenance rates are relatively high but not so high that the Daphnia isocline remains completely
below the algal isocline. The equilibrium to the left has the same local properties as the one in Figure
3b; the novel equilibrium to the right is a saddle, implying that it is unstable and that the dynamics
of the system depend on initial conditions. Combinations of algal and Daphnia densities inside the
area enveloped by the solid line in Figure 3¢ yield dynamics related to the equilibrinm to the left, the
algal and Daphnia densities are likely converge to limit cycles. In contrast, combinations of algal and
Daphnia densities outside the area marked by the solid curve will always lead to the extinction of
Daphnia, while algae will increase to the carrying capacity. Thus, this system with the algal density

at carrying capacity can not be invaded by Daphnia (unless the inoculum is very high). The potential
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dynamics with a second viable equilibrium are mathematically complex, and it suffices to state here
that the shape of the enveloped area may change considerably when parameters are altered, and that

at high total nutrient densities, Daphnie may go extinct, regardless initial conditions.

5 Discussion

The principal message of this paper is the value of the synthesizing unit as a tool for modeling biomass
formation from assimilation fluxes. While producing results similar to those from the minimum rule
(the standard choice for modeling growth with multiple limiting factors - see e.g. (1, 16]), the
synthesizing unit approach provides a mechanistic basis for describing the inefficiencies that oceur
near a switch between limiting factors. Models based on synthesizing units are sparse in parameters;
indeed, the simplest type of synthesizing unit used in this paper requires no parameters beyond those
characterizing the assimilation fuxes.

We have used the synthesizing unit concept in models describing the growth of herbivores sub-
sisting on a producer made up of ‘reserves’ and ‘structure’ that differ in elemental composition. We
have parameterized our models for Daphnia subsisting on phosphorus-limited phytoplankton. But
the formalism is general and could be equally well applied to any consumer feeding on a food source
with variable nutrient content, for instance, to herbivorous insects in terrestrial food webs where
carbon to nutrient ratios in primary producers are much higher than in aquatic systems [6).

Our results confirm and generalize previous findings by Andersen [1] and Loladze ef. al [16]
that Daphnia may go extinct in circumstances where food composition strongly influences Daphnia
growth. Long term persistence of Daphnia depends on several parameters, notably the P to C ratio in
algal structure. total phosphorus density, and the combined loss rates of Daphnia. Those parameters
affect the shape of the isoclines and determine the number and nature of equilibria in our model.
Fortunately, there is extensive empirical information for both the value of those parameters and
their range in natural lakes (see Table 1), and we can therefore explore the effects of this variation
in parameter values in natural systems. For example, an increase in the total phosphorus density
increases the peaks of both isoclines and their intercepts with the x axis. An increase in combined
Daphnia loss rates does not affect the shape of the algal isocline, but reduces the peak of the Daphnia
1socline and its intercept with the x axis. Going from low to high Daphnia loss rates, the system has

first one, then two and finally no viable equilibria (see Figure 3b, ¢ and d). The range in loss rates

11

102



Final Study Report — Nisbet, Muller

over which two equilibria exist is very narrow for most parameter combinations.

An increase in the P to C ratio in algal structure does not directly affect the shape of the Daphnia
isocline, but reduces the peak of the algal isocline and lowers the carrying capacity. Thus, the
likelihood for Daphnia persistence increases and the odds for having two viable equilibria decreases.
With a moderate P’ to C ratio in algal structure of 0.004 and a total phosphorus density of 0.4 M
(carrying capacity is 100 M C), the combined loss rates have to be as high as 0.23 d~! in order to
have two viable equilibria, while with a marginal incrcase to 0.25 d~1, the system does not support
a viable Daphnia population. Those loss rates are high for Daphnia. With a very low P to C ratio in
algal structure of 0.0005 and a total phosphorus density of 0.05 M (carrying capacity is again 100
#M C), the combined loss rates must be smaller than 0.04 d=! in order to have a a viable Daphnia
population; this loss rate is unrealistically low. Those examples show that, under constant growth
conditions, most systems with Daphnia and algae will tend to have only one viable equilibrium.

Our results are consistent with experimental results and field observations that the phosphorus
content of food can have an effect on the growth of Daphnia [28, 27, 3, 4, 7]. However, the magnitude
of this effect changes in time and depends strongly on the size of the population cycles of algae and,
to a lesser extent, Daphnia (see Figure 4). A high mortality rate tends to reduce the prevalence of
phosphorus limited growth conditions for Daphnia. Consequently, we conjecture that the introduc-
tion of a predator will reduce the influence of algal phosphorus on Daphnia growth; confirmation of
this will require study of tritrophic chains in models with explicit stoichiometry.

Consumers may play an important role in the recycling of nutrients in producers. Empirical
information on nutrient recycling can be analyzed with our model. Consumers necessarily excrete
nutrients during maintenance processes at a rate kn.X, in order to maintain a constant body com-
position. Additionally, consumers release the nutrients that they did not assimilate from their food;
this release rate is (j,(n, + m) — 7en.}X.. Another source of nutrient recycling is the decomposition
of dead consumers at a rate of An.X,. Commonly, the remineralization potential of consumers is
expressed as the nutrient release rate as a fraction of the feeding rate [8]. This remineralization
potential equals n, + m + ng(k + A — 7¢)/jp- Figure 5 shows a model fit of this remineralization
potential to empirical data. These data, compiled by Elser and Urabe [8], are from widely different
sources and contain measurements on zooplankton from marine and aquatic systems. Despite the

heterogeneity in source material, we obtain a good fit, even assuming that parameter values are
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similar in all systems. The C to P ratio in consumers is about 70, and the minimal C to P ratio in
producers about 300, but the error bound on the latter is very high (see Figure 5). The ratio of the
combined loss rates and the feeding rate is 0.21. Those parameter values are reasonable for systems
with Daphnia (see Table 1).

Finally, we note that it is possible to use synthesizing units to describe herbivore growth in many
subtly different ways, all consistent with stoichiometric constraints. In this paper we have used
arrival fluxes based on assimilation rates of elemental matter. With this assumption, the effect of
food quality is simply to change the consumers assimilation efficiency in response to the state of
its food. Andersen [1] notes that this assumption may overstate the effects of food composition, as
the energy in large quantities of food is assumed unavailable to meet maintenance demands. Some
authors [1, 12] have proposed non-mechanistic, alternative representations of herbivore growth in
response to this concern. We have work in progress on a family of models based on synthesizing
units with different choices for the arrival fluxes, which will provide a mechanistic basis for these

alternate models.
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symbol | interpretation default range dimension source
value

specific mortality rate 0.15! 0-0.3f d? [18]
production flux - - #1-1

T maximum production flux - - Firt

S binding rate of substrate x; - - #17!

Jp binding rate of substrate - - #e!

j,, specific feeding rate of consumer = 5 d-1

Forn maximum specific feeding rate of | 1.0 = d-1 [20, 21]
consuier

K saturation constant of consumer | 12 - uMC (15, 17]
feeding

k specific maintenance rate ot 0-0.3t d-! (2, 17, 9)
limitation coefficient - - -

m nutrient reserve density - - pMPuMC™?

T number of binding sites for substrate | - - #
Tl

N number of binding sites for substrate | - - #
Ty

n, nutrient to carbon ratio in consumer | 0.0125 0.010-0.015 pMPpMC™1 | [6)
structure

T nutrient to carbon ratio in producer | 0.0033 0.0005-0.0050¢ | pMP uMC—t | [6]
structure

Nios density of total nutrient 0.45 0.1- 0.5} i [29]

Fe specific consumer biomass synthesis | - E d-1
rate

Fem maximum specific consumer | oo - d-!
biomass synthesis rate

Fpm maximum specific growth rate of | 1.0 - d! [25]
producers

Xp producer density - - pMC

X consumer density 4 - rMC
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Yn1

Yu2

Upi

ypﬁ

yield coefficient for assimilating nu-
trients from producer nutrient re-
serves

yvield coefficient for assimilating car-
bon from producer nutrient reserves
yield coeflicient for assimilating nu-
trients from producer structure
yield coefficient for assimilating car-

bon from producer structure

80

0.0

0.327

0.5

70-100

0.05 -0.50

puMC uh P!

pMC uMP-1

(6]

[6]

20, 21]

Table 1: List of symbols and values; a # represents a number, and

quantities representing rates contain a dot.

t the defanit value of the combined mortality and maintenance

rates is 0.15 d~1!, and the range examined is 0 - 0.30 d~!.

! values varied such that the algal carrying capacity, Nyot/ng, s

between 0 and 200 xM C.
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Figure 1. Synthesizing units describe the dynamics of growth at multiple limitations with smooth transitions

between limiting compounds, while generally keeping a close match with Liebig’s minimum rule. The left panel

shows how the contour of the per capita rate of biomass synthesis changes as function of the assimilation flux

of two growth limiting compounds; ny = 1, 5y = 1.5, J,, = 1 and the contour interval is 0.1. The right panel

shows least squares fits of the synthesizing unit model (broken line) to artificial data generated by Liebig’s

minimum rule {(solid line). Parameters used for the minimum rule are #, = 1.5 and J,, = 1, and in sequential

order from bottom to top,my =1, n; =2 and n| =
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maintenance
and mortality

defecation
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: P RESERVES : ! reserves

Light ! : '
ad libitum ¢ ' P from

* structure BIOMASS

. Cfrom
| structure

STRUCTURE .

C in feces
and CO,

DAPHNIA

Figure 2: Diagram of system with algae and Daphnia in which algae experience a phosphorus limitation.
Algae consist of structural biomass and phosphorus reserves, each having a constant elemental composition
(the phosphorus content of algae changes as the amount of reserves relative to structure changes). Daphnie
assimilates phosphorus and carbon from ingested algae to form biomass with constant elemental composition.
Both elements influence the biomass synthesis rate of Daphnia through synthesizing units (SU). Daphnia
excretes the phosphorus that is not assimilated and that is released during the respiration of biomass for
maintenance purposes. This phosphorus, plus the phosphorus recycled instantaneously from Daphnia corpses,

is immediately taken up by algae.
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Figure 3: When phosphorus does not affect Daphnia growth (a), one positive equilibrium may exist (marked
with the dot at (5,16)); the stability of this equilibrium gives way to limit cycles with increasing total phos-
phorus densities. Inclusion of phosphorus as a determinant of the biomass synthesis rate of Daphnia causes
the Daphnia isocline to bend. With a relatively low combined loss rate, the algal and Daphnia isoclines may
cross once and both populations converge either to a stable equilibrium or limit cycles, depending on the total
phosphorus density (b). With higher combined loss rates, two positive equilibria arise and the long-term dy-
namics of the system depend on initial conditions (¢). Inside the area enveloped by the solid line, the dynamics
converge to limit cycles; cutside this area, Daphnia will go extinct and algae grow to their carrying capacity.
With yet higher mortality rates, the isoclines fail to cross (d), and Daphnia can not persist. Parameter values
are in Table I, and the combined loss rates are 0.15 d™!, (e and &), 0.21 4! {¢), and 0.25 d~* (d) Phase

plane plots are constructed with pplane5 [23].
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Figure 4: The impact algal phosphorus can have on Daphnia growth depends on the stability of the system.
With a low total phosphorus density of 0.3 M, the densities of algae (solid line} and Daphnia (broken line)
fluctuate with a relatively low amplitude (), and algal phosphorus contributes little to the biomass synthesis
rate of Dephnia (b). With a high total phosphorus density of 0.45 uM, algae (solid line) and Daphnia (broken
line) show large amplitude cycles (¢), and the limitation coefficient is pericdically above 1 (d), implying that

algal phosphorus is at times the dominant limiting factor for Daphnis growth. Parameter values are in Table
1.
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Figure 5: The model predicts the rate at which consumers excrete phosphorus relative to their feeding rate.
This rate is a nonlinear function of algal phosphorus content, and also depends relatively strongly on the
feeding rate. The line represents a model fit to empirical data compiled by [8]. Nonlinear least squares
parameter estimates are {with standard error): (k + h)/4p = 0.2093 (+ 0.038), n, = 0.0147 (& 0.0048), n, =
0.0032 (- 1.9 10°). The parameter yya can not be estimated and its value has been held at 0.5; it is assumned

that, if needed, Daphnia can assimilate all phosphorus from algae, and therefore ypl =N/t and Yoy = 1/n..
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ABSTRACT

Many toxic compounds in the environment affect the performance of organisms by
reducing food consumption, growth and reproduction. These sublethal effects are modeled using
a dynamic energy budget (DEB) model, which specifies how rapidly an organism takes up food
and utilizes the energy therein to maintain itself, to grow and to reproduce. It is assumed that all
organismal energy fluxes except those supporting maintenance processes decline hyperbolically
with the internal toxicant concentration in excess of a critical value, the no-effect concentration.
Fluxes supporting maintenance processes are assumed to increase linearly with this toxicant
measure. It is also assumed that toxicants have a similar impact on each energy flux, an
assumption leading to model that is maximally sparse in parameters and structure. Thus toxicants
directly affect the rates of feeding, assimilation and maintenance, and indirectly reduce growth
and reproduction rates. The model succesfully describes experimental data on feeding, respiration
and growth by oysters, mussels, fish and earthworms in the presence of various metals and
lipophilic compounds, added singly or in the form of a mixture. The model is also used to
analyze data from a field experiment, where it succesfully describes how the growth of mussels is
impaired when they are exposed to produced water released by an oil production platform.

KEYWORDS

toxicity model; dynamic energy budget model; one compartment model; bioaccumulation; no-

effect concentration; toxic effect; sublethal effect; growth.
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INTRODUCTION

Many compounds accumulate in organisms and then cause a reduction in growth. A large
body of literature models the accumulation of toxic compounds in terms of exchange between
organism and environment. These models range in scophistication from simple one-compartment
models to more detailed descriptions where a growth model plays a role in determining toxicant
uptake (Eby et al. 1997; Jackson 1997; Landrum et al. 1992). However, most bicaccumulation
models have no feedback term through which toxicants affect organismal performance. One
important mechanism for this feedback is that toxicants may cause a reduction in feeding and an
increase in respiration. Such effects have been described in terms of scope for growth, defined as
the excess of energy assimilation rate over respiration rate (Donkin et al. 1989; Widdows and
Donkin 1991). Scope for growth is a particularly appealing concept for ecological applications,
as it sidesteps the issue of chemical cause, and focuses directly on physiological effect. However,
predicting the consequences of changes in scope for growth requires coupling a growth model
with a dynamic model for toxicant exchange and physiological effects.

Organisms require energy from food to remain viable, to grow and to reproduce. Dynamic
energy budget models use differential or difference equations to describe how an individual
organism distributes its energy expenditures (which may be expressed in units of energy or food).
DEB modeling is a tradition that dates back at least a century, when Duclaux (1898) assumed
budgets for maintenance and growth in order to model sugar consumption by baker's yeast. Since
then, DEB models have been developed independently in other biological disciplines, leading to
the wide variety of DEB models that are in use today. Examples include the bicenergetic models
widely used in fishery biology (Kitchell et al. 1974; Kitchell et al. 1977), and the models of Pirt
(Pirt 1965) and Marr (Marr et al. 1962) that are paradigmatic in microbiology.

The form taken by DEB models varies both within and among disciplines. This
diversity derives in part from different modeling objectives. In particular, some models aim to
answer specific questions, with the importance of any particular mechanism being decided in
terms of its relevance to modeling goals. Consequently, one mechanism may get emphasis, while
others are lumped or even ignored, all depending on aims. An important consideration for a fish
biologist may be swimming costs, whereas a microbiologist may need to model specifically the
formation of antibiotics. As a result, many DEB models are designed to describe in detail the
performance of a particular species (e.g., McCauley et al. 1990; Ross and Nisbet 1990}, or of a
group of related spectes (Hewett and Kraft 1993; Kitchell et al. 1977). Those models aim at, and
frequently achieve, a close match between data and model descriptions. However, taxon specific
models have one obvious, yet serious limitation: they cannot be used to compare taxa. In

ecotoxicology, this implies, for instance, that the large body of knowledge from routine toxicity
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tests with waterfleas cannot be used in a model specifically targeting at fish, even if the toxic
compound involved has precisely the same mode of action in both taxa,

This example points to the need for general DEB models based on mechanisms that are
common to a broad range of organisms. Species are generally assumed to differ only in their
parameter values; however, particular attributes of a taxon may be added, provided that additions
do not alter the general core of the model. One such model, developed by Kooijman (1993,
p224-232), successtully describes growth and reproduction in organisms ranging from bacteria
and to whales. It has been succesfully used to describe processes influenced by energy
availability at different levels of biological organization, such as ribosomal translation rates in
Escherichia coli (Kooijman et al. 1991), and predator-prey dynamics in chemostats (Kooi and
Kooijman 1994). Our goal in this paper is to extend Kooijman’s model to describe sublethal
effects of toxicants.

Some previous studies of the accumulation and effects of toxic compounds have used
general DEB models. Changes in the body burden of a toxicant have been related to the state
variables describing size and fatness, characteristics that determine the rates of toxicant exchange
and the potential for toxicant accumulation (Kooijman and Vanharen 1990; Lassiter and Hallam
1990; Van Haren et al. 1994). Toxic effects have been modeled through changes in the values of
DEB model parameters. Using this approach, Kooijman and co-workers (1996a; 1996b:; 1996c:
1996) have developed a method to assess no-effect concentrations in routine toxicity tests, and
Klok and De Roos (1996) have studied consequences of copper contamination for earthworm
populations. These authors have considered several possibilities for toxic effects by formulating a
set of alternative assumptions about target parameters (specific combinations of toxic effect and
species are thus possible), and left open which assumption represents experimental data best.
Moreover, some assumptions make predictions that are absurd at a relatively high toxicant
concentration. In this paper we aim for greater consistency and greater generality.

We develop a model that describes the changes in vital rates induced by toxicants at
sublethal concentrations. The section on theory describes a DEB model, a toxicokinetic model,
and a toxic effect model, which describes the feedback of accumulated toxicants on energy
budgets. In the following section, we test model predictions against diverse experimental data,
including feeding, respiration and growth by oysters, mussels, fish and earthworms. The effects
studied are induced by metallic or lipophilic toxicants, added singly or in the form of a mixture.
Our motivation in testing the model against several data sets is to establish its broad credibility,
before applying it in field situations where data limitations preclude direct testing. The data we
consider offer rigorous challenges to many of the model assumptions, but the fit of model to data
is good. Having established the broad credibility of the model, we illustrate its application to a
field situation: the interpretation of growth data from a field experiment in which mussels are
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exposed to produced water released by an oil production platform. The model extends our
understanding of the toxic effects of produced water by adding predictive power, not available

from routine statistical analyses.

MODELS

We formulate in this section three simple and general submodels, simpie to compare
theory to experimental data and general to embrace various species and toxicants. First, vital rates
are described with a DEB model developed by Kooijman and Metz (1984). Kooijman (1993)
discusses extensively the credibility of the model assumptions, and exemplifies the model with
data from a wide variety of heterotrophic organisms. We largely follow the notation in that
publication, of which one peculiarity needs attention: the use of square brackets around a variable
or parameter, a use that reflects that the variable or parameter depends on body volume. Second,
toxicant dynamics are specified with a particular form of a one-compartment model. One-
compartment models are widely used in ecotoxicology (see Landrum et al. 1992, for a review) .
Finally, a model for the sublethal effects of toxicants is developed in the last subsection.

1. Dynamic Energy Budget Model

DEB models describe how animals assimilate and utilize energy from food. In the
Kooijman-Metz model (see Figure 1), a heterotrophic organism can use the energy assimilated
from ingested food for three purposes: maintenance, growth and reproduction. Energy is
commited irreversibly and continuously, but the maturation and release of reproductive material
may be a discontinuous process, implying a temporary buffer of energy for reproduction. The

cnergy balance equation thus reads as

A=M+G+R (1)

where A is the rate at which energy is assimilated from ingested food, M the rate at which energy
is spent on maintenance, and G and R are the rates at which energy is invested in growth and
reproduction, respectively. For the purposes of this paper, A, M and G need to be specified; a
derivation of reproductive output (and investment in juvenile maturation) is not needed - see
Kooijman and Metz (1984).
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The assimilation rate depends on the rate of food uptake, I. It is assumed that [ is
proportional to the surface area of the food catching apparatus. The Kooijman-Metz model
assumes isomorphic organisms, i.e., ones that do not change shape during growth. The volume of
the organism,V, is then proportional to the cube of a length measure, and any of its surface areas
is proportional to V*. It is also assumed that the organism responds hyperbolically to food
density (type II functional response), yielding a scaled functional response, f, which takes values
between 0 and 1. Consequently,

1=1,v" 2)

with I beingthe maximum surface area specific uptake rate (units of food per unit of surface area
per unit of time). The energy contained in ingested food is assimilated, a process for which a
constant efficiency is assumed. This constant assimilation efficiency equals [ /A , where 4 isthe
maximum surface area specific assimilation rate (units of energy per unit of surface area per unit
of time). The assimilation rate is thus simply proportional to the ingestion rate given in equation
(2).

Maintenance and growth are assumed to consume a fixed fraction, k, of the assimilated
energy, with maintenance taking priority over growth; the remaining fraction, 1-x, is commited
to reproduction. The maintenance rate is assumed to be proportional to the size of an animal, or
M = {M]V, with [M] being the volume specific maintenance rate (energy unit per volume unit per
time unit). The rate at which an organism increases in size is assumed to be proportional to the
rate of commitment of energy to growth, so that G = [G]dV/dt, with [G] being the volume
specific investment in growth (energy unit per volume unit). With these assumptions, the growth

dynamics are

v (K, qen [M])
dt ’{ 17 [G] VL 4

where the subscripted ‘plus’ means that growth is zero when the term within brackets is negative,
which happens when assimilate dedicated to growth and maintenance is insufficient to meet the
demand for maintenance (then, energy fluxes must be prioritized differently; but this case is not
encountered in this study). When the food density is constant, equation (3) implies that the
asymptotic size is V..""=x A f/[M].

In practice, growth is often expressed in terms of an increase in length, L, which is
proportional to V" in isomorphs. The growth dynamics expressed in this way are:

119



Sublethal Effects of Toxicants on Organisms. A Modeling Approach with Dynamic Energy Budgets

dL
E = ’y (Lm - L)+ (4)

where L., is the asymptotic length at constant food conditions, and ¥ = [M]/3[G] is the growth rate
parameter, which has the dimension per time. This equation can be solved for constant food
densities and for a constant body burden of toxicant (see below), and yields the von Bertalanffy

growth curve,

Liy=1I_— (L. —Lye™". (5)

The link between model variables and many measurable quantities requires additional
assumptions. Size is often expressed as dry or wet weight, which are assumed to be proportional
to biovolume. Extra assumptions are also required to analyze data on respiration. Respiration
reflects the loss of usable energy, to which each energy flux may contribute. The contribution of
a flux is assumed to be proportional to its magnitude (Kooijman 1995). Then, the respiration rate
is a linear combination of the assimilation, maintenance, growth and reproduction rate. Made
explicit in biovolume and the parameters associated with assimilation and maintenance, the

respiration rate, r, is

r=aA, V" + B MV (©)

where o and B are compound parameters that include [G], x and the proportionality factors
converting the energy loss associated with assimilation, maintenance, growth and reproduction

into moles of oxygen.

2. Toxicokinetics

A one-compartment model describes the change in the body burden of toxicant as the
difference between the rates for toxicant uptake and removal. Most models take uptake
proportional to body mass, but here the uptake rate is assumed proportional to the surface area of
an organism, so proportional toV”. This recognizes that compounds must cross a surface to enter
an organism, whether it is via the gut, gills, skin or lungs. Surface dependent uptake agrees with

data on, for instance, mussels taking up PCB congeners (Gilek et al. 1996). In addition, it is
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assumed that the the uptake rate is proportional to the toxicant concentration in food, C, and the
ambient concentration of ‘dissolved’ toxicant, C,. The removal rate is analogously modeled as a
function of size and a toxicant concentration. Toxicants can leave an animal via molts, gills,
kidneys or gut but, again, must cross a surface to get removed (removal via egg deposition is not
considered here). Consistently, the removal rate is assumed to be proportional to the surface area
of an amimal. The removal rate is additionally assumed proportional to the density of toxicant in
the organism, the body burden of toxicant, [O].
Consequently, the total amount of toxicant in an animal, @, changes according to

% = (kCut SO~k fOIV" %

in which k&, and k_ are the surface area specific uptake rates for dissolved and food-associated
toxicants, respectively; they have the interpretation of ambient volume cleared of toxicant per
unit of amimal surface and per time. The toxicant conductance rate, k, specifies the rate of
toxicant removal (length unit per time unit).

The dynamics of the body burden of toxicant are now obtained by applying the chain rule
for differentation (recall that Q=[0Q]V). So,

M_ ~1/3 - ( 173 ..]_ﬂ
2=y, €k fC)-[0] KV S ) ®

The expression for growth in this equation accounts for the dilution of [Q] due to growth. In a
constant environment, the body burden of toxicant eventually reaches an equilibrium value, [Q]'.
C+k fCHk . If the
toxicant is taken up only directly from the environment, [Q]=Ck,/k_, the ratio of the exchange

Then, the animal will have ceased to grow (see equation (3)) and {Q]'=(kdﬂ
parameters being known as the bioconcentration factor. Similarly, if the toxicant is taken up only
via food, [Q)'=fC k_ik_,.

Studies reporting on effects of toxicants unfortunately seldom use the body burden as a
toxicant measure. Instead, the available toxicant measure is often the nominal concentration, the
initial concentration in the environment. Then, the body burden of toxicant needs to be
reconstructed, which requires a scaling of the body burden with model parameters. In general, a
scaling reduces the number of parameters in a model, while all mechanisms are retained.

A reconstruction of the body burden of toxicant is feasible if ambient toxicant levels are
constant, which is approximately true when the system volume is sufficiently large or when

toxicants and food are regularly replenished. Accordingly, in the presentation below, the ambient
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toxicant concentration is assumed to be constant. With a toxicant taken up only directly from the
environment, a reconstruction of the body burden of toxicant can be obtained after scaling the
body burden with the bioconcentration factor, yielding a body concentration, C,, with dimensions

equivalent to the ambient concentration. After substitution of C, = k, [Q)/k,, and changing the

size measure to length, equation (8) becomes

dc.  k 1 dL
—t ()3 ——
dt L ) “ L dt ©)

where &k, has a new value because of the change in size measure. The parameter for toxicant
uptake has disappeared as an explicit constant, leaving the toxicant conductance rate as the single
parameter to determine toxicant exchange. For toxicants (also) taken up with food, a similar
scaling of the body burden of toxicant also leads to equation (9).

Experimental data on growth may contain insufficient information to estimate the toxicant
conductance rate from equation (9). Such data can be analyzed by assuming extreme values for
the toxicant conductance rate: either very high or zero (Koocijman and Bedaux 1996b). Given
initial conditions, this method yields two reconstructions for the body burden of toxicant, and
these reconstructions span the range of all possible outcomes. If the toxicant conductance rate is
very high, the toxicant concentration in the ambient can be directly used as a measure for the
body burden. For this purpose, the toxicant conductance rate must be high with respect to the von
Bertalanffy growth rate and the inverse of the experimental duration. As a consequence, dilution
of the body burden due to growth is a negligibly slow process, and the body burden will rapidly
approach its equilibrium value. In effect, then, the body burden of toxicant is always
approximately proportional to the ambient concentration,

If, on the other hand, the toxicant conductance rate is negligibly slow, the
bioconcentration factor and, consequently, C, are not defined. The body burden of toxicant thus
needs to be scaled in another way. With S, = [Q]/k,, an expression is obtained that lacks an
explicit reference to the exchange parameters, but contains all the mechanisms of the
toxicokinetic model. Substitution of S, in equation (8) gives

4, G35

L

L

& [ &

(10)

in which S 1is the body concentration expressed in an ambient concentration measure times time

per length.
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3. Toxic Effects

Toxicants, at sublethal levels, are assumed to affect energy budgets by changing the
parameter values in the DEB model. These parameters specify efficiencies, rates and the
partitioning of energy between somatic and reproductive tissue. We consider toxicants that alter
the flow rates of energy. The assumptions are:

(i) Toxicants have no effect on energy budgets up to a fixed tissue level, the no-effect

concentration (NEC).

(i) Energy fluxes decline hyperbolically with the effective toxicant concentration (the

body burden of toxicant minus the NEC), except those supporting maintenance processes

which increase linearly with the effective toxicant concentration.

(iii) Toxic effects have a similar impact on each energy flux, implying that the

toxicological parameters, the NEC and the scaling parameter K, have the same value in

each expression.

Consequently, three primary parameters of the DEB model are affected by toxicants: the
maximum surface area specific rate of feeding, [ ; the maximum surface area specific rate of
energy assimilation, A ; and the volume specific maintenenance rate, [M]. Efficiency parameters
are not affected, since they represent ratio’s of rates, so that effects cancel. Effects on the

partitioning parameter are not considered. Substitutions to be made in previous equations are:

! A (2-12,)
= 0 A = .0 . — e 1),
I, l+([Q]—[Qm])+= n 1+([Q]_[Q”«-])+'[M] [M]0(1+——~——-Ki ](11)
K. K

1 ‘

where the indexed zero’s refer to parameter values in absence of toxicants, and [(Q] and [@ ] are
body burden of toxicant and NEC, respectively. The subscripted plus implies that toxic effects
are not experienced when [Q] < [Q, 1. Scaling of [Q], [@, | and K, with the bioconcentration
factor (see previous subsection), yields C, C_ and K’, which subtitute their unscaled
counterparts in the toxic effect functions.

Compound parameters that are derived from the rate parameters, the ultimate length, L.,

and the von Bertalanffy growth rate, ¥, become

L.,., 0 ([Q] - [Qm'{.' ])
L = : 3 Y EY (/) (12)
_ K
[1+ o I[(Qm]l] ;
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It may seem odd that the von Bertalanffy growth rate increases with the toxicant concentration.
However, this growth rate by itself does not determine how fast an organism grows; rather it
specifies how fast the organism approaches its ultimate size (see equation (5)), which is reduced
in the presence of toxicants. Indeed, equation (4) shows that the initial rate of increase in length
equals yL.., which decreases hyperbolicaily with the toxicant concentration.

The rationale for these assumptions is as follows. Assumption (i) reflects the possibility
that energy fluxes may be unaffected by toxicant levels up to some critical value. For example,
some toxicants are detoxified through degradation, trace elements are functionally incorporated
in enzymes and divalent metals are compartmentalized or bound by metallothionins, proteins for
metal homeostasis. Furthermore, an organism may physiologically adapt to low toxicant levels,
e.g., by increasing the concentration of just a few enzymes. These and other neutralization
mechanisms have a marginal effect on energy budgets, since they demand only small changes in
body composition (while still allowing that some organs or specialized cells to accumulate a
large amount of toxicants). The simplest way to take neutralization mechanisms into account is to
assume a concentration below which toxic effects are not observed, i.e., a constant NEC.

Assumption (ii} aims to represent toxicants that reduce the rate of energy transduction
through biological systems. As the principal, sublethal mode of action, this representation is
plausible for many metals and lipophilic compounds. Metallic toxicants readily bind to ligands,
most notably the sulphydryl groups of proteins, and thereby inhibit enzyme activity (Byczkowski
and Sorenson 1984). Lipophilic toxicants dissolve in the lipid bilayers (membranes)
encapsulating cells and organelles, and thereby hamper the functioning of these membranes (sec
Sikkema et al. 1995, for reviews; Van Wezel and Opperhuizen 1995). The effects, albeit not well
understood, often depend on the hydrophobicity of the toxicant (Verhaar et al. 1992), and may
include inhibition of membrane embedded enzymes (Franks and Licb 1994), and a reduction of
membrane resistance (Sikkema et al. 1995).

In the model context, such toxicants thus reduce the rate at which energy is acquired by
and delivered at DEB model processes, except maintenance, which represents a demand rather
than a supply. Maintenance demands are assumed to increase in the presence of toxicants, since
an organism aims at stability, including stable intracellular ion concentrations. It takes more
energy to maintain stable ion concentrations at a lower resistance of cell membranes, a reduction
that can caused by toxicants (Sikkema et al. 1995).

The reason for choosing a hyperbolic response to the toxicant concentration for feeding
and assimilation, and the inverse of that for maintenance, is that it matches concepts in enzyme
kinetics, which has analogies at all levels of biological organization. Analogies are routinely used
at the level of organelles (see Figure 2), organisms (type II functional response) and populations
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(population growth rate of microorganisms (Monod 1950)). Enzyme performance is reduced
when inhibitory compounds are present. Enzymatic conversion rates decline as a hyperbolic
function of the inhibitor concentration, the shape of the function depending on the working
mechanism of the inhibitor (Segel 1993). We have choosen non-competitive inhibition kinetics as
a paradigm, since it is mathematically the most tractable form, and the mechanism of this type of
inhibition may be because of a common enzymatic attribute, such as having a sulphur ligand.
Moreover, many heavy metals are known as non-competitive inhibitors (Byczkowski and
Sorenson 1984),

Assumption (ii1) is somewhat arbitrary, although there are mathematical and biological
arguments supporting it. The assumption keeps the model maximally sparse in parameters, which
is important in model testing. The credibility of a model with many parameters can be evaluated
only when a large body of quantitative information is avaliable, and such elaborate data sets are
very rare in ecotoxicology. Furthermore, the assumption keeps the model structure maximally
simptle. It implies that parameters describing efficiencies cannot be affected, since an efficiency is
the ratio of two rates, so that effects cancel. The assimilation efficiency, for instance, is the ratio
between the rate parameters specifying feeding and assimilation. A similar argument holds for
two other efficiency parameters, the growth cost parameter, [G], and the scaling parameter in the
scaled functional response (not explicitely introduced).

A rival, equally arbitrary assumption states that at any sublethal concentration, only one
process is noticably affected by a toxicant (Kooijman and Bedaux 1996a; Kooijman and Bedaux
1996b; Kooijman et al. 1996). This assumption leads to more complexity than our assumption,
since in this case a sutte of models results. Each submodel assumes toxic effects on a different
parameter, which may be a rate or efficiency parameter. However, experimental results
demonstrate that at least some toxicants cause effects on multiple processes. For instance,
mussels feed slower and respire faster in the presence of pentachlorophenol or tributyltin
(Widdows and Donkin 1991; Widdows and Page 1993).

It is important to extend the toxicity model to include effects of multiple toxicants, since
in most environments organisms are exposed to a variety of toxicants. The simplest way to
include multiple toxicants is to assume that a contaminated environment can be diluted to a
critical level below which the organism is unaffected by the contaminants, and that above that
level the contaminants work additively (Walker et al. 1996, p165-167). This implies that the
effects of a toxicant can be substituted by another through appropriate dosing. If the ratio of toxic
compounds in the environment is constant, and if the various compounds are exchanged at
approximately equal rates by the organism, then the sum of scaled body burdens of toxicant is
proportional to any single scaled body burden, and toxic effects can be described as in equations
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(11) and (12), with [Q] being the body burden of toxicant of any of the compounds present, and
with [@, ] and K, being compound parameters for the NEC and toxicity scaling, respectively.

METHODS

Model parameters were estimated from data with (predominantly) non-linear regression
techniques. For this purpose, it was assumed that differences between observations and model
predictions were the result of normally distributed sampling error. It was assumed that noise had
only eccured in biclogical variables (rates of feeding and respiration, length, etc.), not in physical
and (bio)chemical variables (time, concentration, body burden of toxicant). The residuals squared
were weighted with the number of measurements, except, mostly, residuals squared of sizes,
which were weighted with length squared because the variation in growth data tend to increase
with a constant coefficient of variation (Kooijman 1993, p121). When multiple data sets were
involved, parameters were estimated from all data sets simultaneously.

Regression problems were solved numerically (see, e.g., Burden and Faires 1988, for a
description of numerical methods). Sums of squares were differentiated with respect to the
parameters using the forward difference method. The roots of the normal equations were solved
with the Gauss-Newton method. Inverse problems were solved using the fourth order Adams

Predictor-Corrector method.

TESTS WITH EXPERIMENTAL DATA

Ideally, an evaluation of our model would involve separate experimental tests of each of
the model assumptions, followed by tests of their predictions when combined in the model. This
ideal is unattainable, as experimental information on several of the key state variables (e.g.,
changes over time of body burden of toxicant) is seldom available (see for tests of the DEB
model Kootjman 1993; Kooijman and Metz 1984). Our model tests are therefore indirect. The
model assumptions are combined in different ways to obtain a variety of model predictions,
which are then compared to experimental results. Such an evaluation is increasingly convincing,
the greater the diversity of the comparisons made, and the smaller the number of fitting
parameters. Thus in this section we discuss the model’s predictions on mitochondrial activity,
feeding, respiration and growth. The toxicants considered include various metals and lipophilic
compounds, the affected organisms being mussels, oysters, earthworms and zebrafish. Parameters
are estimated by fitting data on specific organisms exposed to different levels of toxicant, the
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credibility of the model being determined by its ability to fit a wide combination of toxicants and

organisms with a small number of free parameters.

1. Effects on Mitochondrial Activity

We first consider a very simple system, a suspension of mitochondria with several
toxicants. Although our model describes individual organisms, this simple system is relevant,
since energy flows at suborganismal levels are supposed to be the basis of DEB assumptions, and
mitochondria, being generators of ATP, are a key component in the transduction of energy.
However, the data we discuss here have been collected in vitro, with substrates available in
excess. in vitro fluxes are not regulated to meet metabolic demands. The results, therefore, do not
indicate how the output of mitochondria in vive changes as a result of toxicant action. Yet, the
results are informative, because they illustrate how toxicants affect the capacity of a complex
assemblage of membrane-embedded enzymes to conduct energy.

Mitochondrial activity is studied with cadmium (Kesseler and Brand 1694), 2.4.6-
trichlorophenol (TCP) or 2,4-dinitrophenol (DNP) (Shannon et al. 1991) as toxicants. The
examples thus include one metallic and two lipophilic compounds. Mitochondrial activities are
fitted with an expression analogous to that for /_ in equation (11) with [Q,.]1= 0. Toxicants are
thus assumed to act as non-competitive inhibitors of mitochondrial activity (Segel 1993, pl25-
132). Figure 2 shows that this expression describes quite well the inhibition of mitochondrial
ATP production by cadmium, TCP and DNP. Parameter estimates are given in the legend to the
figure. The data with cadmium are particularly informative, since the authors corrected the
nominal concentration for toxicologically inactive cadmium bound to chelating agents, thereby
obtaining the free cadmium concentration. Comparing the lipophilic toxicants, TCP inhibits more
strongly than DNP; the concentrations at which the mitochondrial activity is halved, K, being
37.5 and 69.9 uM, respectively. This is to be expected, because TCP is more lipophilic than DNP
(Mackay et al. 1992), and lipophilicity is generally an indicator of toxicity (Van Wezel and
Opperhuizen 1995; Verhaar et al. 1992).

2. Effects on Feeding and Respiration
Toxic effects on feeding and respiration are examined with data on similarly sized blue
mussels, Mytilus edulis, which were briefly exposed to toluene (Donkin et al. 1989) or penta-

chlorophenol (PCP) (Widdows and Donkin 1991). Figure 3 shows that PCP and toluene have
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similar effects on feeding, and that PCP also affects respiration. The reported rates for feeding
and respiration are scaled to the rates in absence of PCP and toluene. The available measure for
toluene is the ambient concentration, and it is not immediately clear whether this is a legitimate
measure to use in the toxicity model. It can be used, though, because the exposure time was very
short (less than one hour). In clean organisms, the toxicant concentration initially increases
linearly with time (see equation (8) for [(2]=0). Hence, in short experiments the body burden is
about proportional to the exposure time and to the ambient concentration, a dependency that is in
agreement with measurements with PCP as a toxicant (Widdows and Donkin 1991). A
consequence of using the ambient toluene concentration is that parameter estimates will depend
on exposure time, which is unfortunate but does not hamper a test of the model.

Also the measurements with PCP need a remark. We disregard the response at the highest
PCP concentration, which deviates considerably from other measurements, The mussels ceased
to feed, possibly because they closed their shells, which is their usual response to adverse
environmental factors. Organisms that fail to feed will ultimately die, while this study focusses
on sublethal responses to toxicants. Cessation of feeding also bears consequences for aerobic
metabolism. Mussels that do not feed have little opportunity to acquire oxygen and, therefore,
change partially to anaerobic metabolism (Wang and Widdows 1993). Then, respiration is not a
proper measure for total metabolism and equation (6) is invalid.

Model fits are in good agreement with the experimental results (see Figure 3). Parameters
estimated from both data sets with equations (2), (6) and (11) are the no-effect concentration (set
at zero for PCP, its apparent value), the saturation constant and a compound parameter, p=A_ /B
[M],, which results from scaling the respiration rate in equation (6) (see figure legend for
estimated values). The initial scaled rates and the size of the mussel are set on their measured
values. The feeding rate is well fitted by a hyperbolic function of the ambient toluene
concentration or body burden of PCP (sce figure legend for parameter estimates). The predicted
respiration rate increases almost linearly as a function of the body burden of PCP, a prediction
that is supported by the data. Thus, the fits of feeding and respiration are both satisfactory,
despite the fact that only two parameters are estimated from these two data stes. This result
especially supports assumption (iii), which states that toxicants have a similar impact on each

energy flux.

3. Effects on Growth

Toxicants affect growth indirectly, by reducing the uptake of food and assimilation of
energy, and by increasing maintenance demands. The result of these toxicant induced changes on

15

128



Final Study Report — Nisbet, Muller

growth are examined with data on bivalves, an earthworm and a fish. Neither of the data sets,
however, contain information about the body burden of toxicant. This measure needs to be
reconstructed from the ambient concentration (see Toxicokinetics Section). In principle, a
reconstruction can be obtained by combining equations (3}, (9) and (12), implying that it must be
possible to estimate the toxicant conductance from data on growth. In practice, however, the
quality of the data is too poor for this purpose. As discussed above, an alternative is to assume
the toxicant conductance rate to be either very high or negligibly small, resulting in two
accumulation curves, which mark the range of possible curves. For moderately lipophilic
toxicants, which are generally rapidly exchanged (Hawker and Connel 1986), only the first
extreme is considered, and because in all cases the experimental duration was relatively long, the
nominal concentration is used as a measure for the body burden of toxicant. For metallic
compounds, both extremes for the toxicant conductance rate are considered.

The first examples are on larval growth of the oyster Crassostrea gigas (Beiras and His
1994) and the mussel M. galloprovencialis (Beiras and His 1995) reared at different mercury
concentrations. The experimental design was similar for both species. The larvae had been
exposed to mercury since the fertilized egg stage and were regularly transfered to new vessels
containing filtered sea water, mercury and algae. It is therefore assumed that the ambient mercury
concentration and food density were sufficiently constant to apply equation (12) with equation
(4), or with equations (4) and (10). So, in the absence of toxicants, larvae should exhibit von
Bertalanffy growth. However, growth initially accelerated (see Figure 4), as is usual for larvae
(Bayne 1976), which might be the result of food catching capacities increasing with size or time.
Such a mechanism can be modeled, but for simplicity we assume that larvae need a fixed period
to gain full feeding capabilities. Thus, it takes a fixed time delay until growth in the absence of
toxicants becomes of the von Bertalanffy type. This time delay has to be given a pre-determined
value for the mussel but could be estimated from the data on oyster larvae. Also the utimate size
in absence of toxicants, L...g, needs to be chosen independently of the data, which contain little
information about this parameter (estimation of this parameter requires a longer experimental
duration). On the basis of published growth curves, we take L..p= 350 uM (see Bayne 1976}, but
selecting 10% higher or lower values scarcely affect fits and estimates of other parameters.

Figure 4 shows model fits to the growth data of oyster and mussel larvae, and Table 2
gives parameter estimates for one extreme case for toxicant exchange, that is, having a body
burden that is always in equilibrium with the ambient concentration because of a high toxicant
conductance rate (the other extreme, resulting from a negligibly small toxicant conductance rate,
yields parameters that lack a clear biological interpretation). With the first extreme, the model
properly predicts intitial and subsequent growth of beth species at low mercury concentrations.
Both species tolerate a little mercury in the ambient, the NEC is less than 8 nM, causing the
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growth curves at the lowest (5 nM) and zero mercury concentration to be {almost) identical.
Values for the toxicity scaling parameter, K, show that mercury is a little more toxic for oyster
than for mussel larvae. With the other extreme assumption, i.e., larvae fully retain mercury, the
model correctly predicts that growth ceases at the highest mercury conceatration, although the
initial increase in size is too fast. The extremes thus complement each other in describing the
data.

The second example is the effect of copper on growth of the earthworm Lumbricus
rubellus. The earthworms were reared for more than 5 months and accumulated copper via
ingestion of contaminated soil (Ma, cited in Klok and De Roos 1996). Parameters are estimated
using the same methods as in the previous example, yielding a relatively high no-effect
concentration (see Table 2), which is not surprising since copper is a trace element needed for
growth. Figure 5 shows that high copper levels strongly reduce growth {the shape of the curves
differs from the previous example as the size measure is weight rather than length). As before,
assuming a high toxicant conductance rate gives better predictions at low copper levels, whereas
the other extreme is more succesful in predicting that growth stops at the highest copper level. At
lower levels, growth is reduced more than the model predicts. This may be the result of food
becoming limited or coccoons being produced. Nonetheless, the fits are reasonable, which shows
that the model is also applicable to non-aquatic organisms.

The third example concerns the zebrafish Brachydanio rerio growing with
benzo(k)fluoranthene (Hooftman and Evers-De Ruiter 1992), or a with a mixture of
benzo(k)fluoranthene and 5 other polycyclic aromatic hydrocarbons (PAH) (Hooftman et al.
1993). At the highest dose, the concentration of the constituents in the mixture, listed in the
legend to Figure 5, equaled the no-observed-effect concentration (NOEC) of each PAH, which
had been measured in previous experiments. Because the relative contribution of each component
was constant, a suitable measure for the ambient toxicant concentration is the volume of PAH
mixture added. The fish were kept in an intermittent flow-through system, so food and toxicant
concentrations were relatively stable. The fish had been exposed to toxicants since the fertilized
egg stage and were grown for 37 days after hatching. The final length reached was recorded as a
function of the nominal toxicant concentration, but information about the growth trajectory is not
available. Therefore, some parameters cannot be estimated. Values for the growth rate and the
length at birth are taken from the literature (Kootjman and Bedaux 1996b). Free parameters are
estimated with equation (4) and (12).

Figure 5 and Table 2 show how PAHs change the growth of zebrafish. With
benzo(k)fluoranthene alone, mortality was significant at the higher concentrations, which
indicates that the whole range of sublethal concentrations is covered. The first three data points
represent the average length of 45-50 fish, the fourth and fifth 13 and 1 fish, respectively. Since
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the data have been weighted accordingly (the standard deviation is consistently about 0.3 cm), the
first three data points have the most influence on the fit. The NEC for benzo(k)fluoranthene is a
little higher than the NOEC, 1.0 versus 0.7 nM, which is in line with the fact that the NOEC is an
underestimation of the NEC. With the other example, the doses of the PAH mixture do not cover
the whole range of sublethal concentrations. More fish survived, 75 at the lowest and 55 at the
highest toxicant dose, than with the addition of benzo(k)fluoranthene alone, and, alse, the
difference in size at the highest and lowest dose is smaller. Yet, the reduction in growth is
satisfactorily described by the model. This reduction cannot be explained by effects of
benzo(k)fluoranthene alone, since the NEC for this compound is higher than its concentration in
the highest dose of the mixture. The contribution of each of the PAH’s to the growth retardation
is well described by assuming that the PAH’s work additively beyond a certain dilution of the

mixture.

CASE STUDY: MUSSEL OUTPLANTS

Field conditions generally preclude testing of detailed, individual based models. However,
model assumptions may then be tested in controlled experimental systems (see above), and a
validated model can be applied to investigate the performance of organisms growing under field
conditions. We apply our toxicity model to published data from a field experiment with two
mussel species, Mytilus edulis and M. californianus (Osenberg et al. 1992). This experiment has
been described in sufficient detail to enable application of the model. Bags with variously sized
mussels were placed at six different locations near oil production platforms in the Santa Barbara
Channel, off the California coast; the distance between bag and contamination source was
between | and 1000 m. After four months size increments were determined. The mussels had
been exposed to produced water, fossil water that is extracted during oil production and released
into the environment. Produced water contains several heavy metals and is especially rich in
barium. Although produced water was so strongly diluted that a change in ambient
concentrations was not observed, even at the most contaminated site, mussels accumulated
appreciable amounts of barium in their shells. Concommittantly, they grew and reproduced
significantly less, either through effects of barium or other toxicants in produced water.

The application of the toxicity model to those data rests on the premises that the barium
content in shells can be used as a cumulative measure of toxicant exposure, and that
environmental conditions had been sufficiently smooth. Barium is potentially a substitute for
calcium. Consequently, it is assumed that barium is incorporated irreversibly in the shell matrix,
and that the relative contribution of barium during shell formation is proportional to the barium
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concentration in soft tissue. Then, in equilibrium, the barium content of the shell is proportional
to the ambient barium concentration, which holds for planktonic foraminifera incorporating
bartum in their skeleton (Lea and Spero 1992). Moreover, it is assumed that for all outplants the
food density fluctuated around the same mean, and that these fluctuations were relatively small.
This 1s reasonable as the experiment was carried out during the summer months, so
phytoplankton densities and the temperature should have been relatively stable. Moreover, model
simulations (not shown) establish that a growth curve at constant food provides a good
approximation to one at variable food conditions, provided the fluctuations are not too large.
With these simplifying assumptions, equations (4) and (12) can be used as before. The dependent
variable is the size of the individual mussels after four months of exposure, and the independent
variables are the initial length of individual musseils and the barjum content in shell formed
during exposure. There are only six measurements of barium content, because shell fragments
from each location were pooled to enable analysis. Parameters to be estimated are the ultimate
length, the growth rate and the toxicity scaling parameter. The no-effect concentration could not
be determined, probably because all barium levels exceeded the no-effect concentration; we set
this parameter at zero. Thus, three parameters are estimated from six data sets.

Figure 7 gives the final length as a function of the initial length at six different barium
levels for M. californianus, and Figure 8 for M. edulis; the legends contain the parameter
estimates. For presentation purposes, each data point represents the mean of four or five
measurements and the results are spread out over two graphs. The bends in growth at the higher
barium levels occur because animals (shells) cannot shrink; after a bend, the final length equals
the initial lenght. The data exhibit a fair bit of scatter, M. edulis more than M. californianus, but
the model is consistent with the observed reduction in growth performance. This reduction is
small but, as determined previously, is statistically significant (Osenberg et al. 1992).
Consequently, model fits are close to each other, and the highest barium content measured, 18.4
nmol. g", is much lower than the values estimated for the toxicity scaling parameter, which are
82.7 (= 7.3) nmol. g" and 186.4 (+ 54.5) nmol. g"' in shells of M. californianus and M. edulis,
respectively. The estimates also show that M. californianus is more sensitive to produced water
than M. edulis.

The toxicity model thus satisfactorily describes the impact of produced water on the
growth of mussels. It adds value to a previous analysis, which showed that the impact is
significant (Osenberg et al. 1992). The model can explain why and how produced water reduces
the growth (and reproduction) of marine organisms, and may therefore be used to make
predictions. To illustrate this predictive power, we have calculated how a ten year old M. edulis
would have performed in a polluted enviroment. For simplicity, we have considered a constant
environment (temperature = 15°C; f = 0.5), and toxicants with rapid kinetics, implying that the
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body burden of toxicant is always in cquilibrium with the ambient concentration. These
assumptions thus represent conditions not unlike those in the study with mussel outplants. Using
parameter values for M. edulis from Van Haren et al. (1993) (which imply L..p = 6.5 cm; ¥ =
(.45 yr'; k= 0.8, and the length at settlement and maturation is 0.1 and 0.7 cm, respectively), we
have determined growth and cumulative reproduction, defined as the lifetime reproductive output
of an organism. An equation for reproduction is not given in the modeling section, but can be
deduced from the assumptions given plus two extra assumptions that specify maturation (see
Kooijman 1993). Growth and cumulative reproduction are expressed as a fraction of the
respective values in a clean environment, that is, an environment in which toxicant levels do not
exceed the NEC. Toxicant levels beyond the NEC are scaled to the toxicity scaling parameter, K;
the scaled concentration is zero for toxicant levels at or below the NEC.

Figure 9 illustrates model predictions about how a ten year old blue mussel would have
performed in a stable environment with toxicants. In a clean environment with food conditions
specified above, mussels have grown to 6.4 cm, 0.1 short of the size maximally attainable in this
environment. Growth declines rapidly as a function of the scaled toxicant concentration. At a
scaled toxicant concentration equaling K, mussels become onty 1.7 cm long. Also reproduction is
severely reduced in the presence of toxicants. It seems that reproduction is more affected by
toxicant action than growth, but this reflects for the main part a difference in scaling; differences
largely disappear when size is expressed In a volumetric or mass measure, At a toxicant
concentration equaling 0.2 K, cumulative reproductive output has dropped more than 80% as
compared to reproduction in healthy mussels, and at concentrations beyond 1.8 K, mussels have
not reproduced at atl, because they did not reach adulthood, that is, they grew less than 0.6 cm in
a decade.

It is informative to compare these simulation results with the experimental examples in
this study. Estimates for X, (see Table 2 and legends to the Figures) show that maximum toxicant
levels in these experiments were usually less than K, and, in experiments with mussels, less than
0.5 K. The results suggests that the toxicant levels used in the experimental studies would have
had a devastating effect on reproduction. In the case of the mussels outplanted near oil production
platforms, where the highest level of barium in shells is between 0.1 and 0.2 K, reproductive
output from an individual during a ten year period would have declined by more than 50% as
compared to a healthy individual. This is despite the fact that barium levels in the ambient were
too low for detection. Thus, even at very low ambient toxicant levels, a toxicant induced
reduction in feeding and increase in maintenance demands may have a great impact on
reproductive output and, thereby, the dynamics of a population.
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DISCUSSION

In this paper, a simple DEB model is linked to a toxicokinetic model and extended with
functions that describe the sublethal effects of toxicants. Toxicants are assumed to affect the
energy transduction in organisms in a hyperbolic way. As a result, toxicants directly affect
parameters that specify the rates of feeding, assimilation and maintenance, and indirectly reduce
growth and reproduction rates. The model successfully describes how various lipophilic and
metallic compounds, either added singly or in the form of a mixture, change the rates of feeding,
respiration and growth in several animals.

Extending the scope of any model involves introducing new parameters and adding
structure. Our extension of the DEB model introduces a minimum of additional parameters. For
most practical purposes, one parameter, the toxicant conductance rate, arises from toxicokinetics.
Two more are needed to specify toxic effects: a scaling parameter and the no-effect
concentration, the latter being zero for really deleterious compounds. The increase in structural
complexity of the model is minimal. Assuming that toxicant exchange between organism and
environment is dynamic, a one-compartment model is the simplest way to model this exchange.
Also, inclusion of toxic effects is achieved with a minimal number of rules, since toxicants are
assumed to have a similar impact on each energy flux,

This simplicity is achieved at the cost of one subtle, conceptual inconsistency: in the
model, the uptake rate of toxicants from food does not decline because of toxicant action,
although the feeding rate does. An assumption of toxic effect on toxicant uptake via food would
lead to dependence of the bioconcentration factor on the toxicant content of food, a property that
would frustrate our scaling of the body burden of toxicant to its content in food (cf. equation (9)).
This scaling is necessary when the available toxicant measure is the ambient toxicant
concentration rather than the body burden of toxicant. In theses cases, the dynamics of toxicant
exchange become quite cumbersome when feedback of toxicants on their uptake is taken into
account. In the present study, we therefore accepted the inconsistency, which is unlikely to have
major consequences in the only example where it plays a role: the growth of earthworms with
copper. However, in other applications, it may be important to consider explicitly toxic effects on
intake of toxicants with food.

Because our model is mechanistic, the new parameters are independent of the specifics of
any experimental protocol (e.g. exposure time). This is not the case for classic measures, such as
the EC,,, defined as the toxicant concentration causing a response half of the maximum effect on
some process. Our toxicity parameters are related to the EC,, observed after a long exposure time,
that is, when the body burden of toxicant is in equilibrium with the ambient concentration, but

the nature of the relationship depends on the process(es) being studied. The ultimate EC,, for

S0
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feeding is simply the sum of the scaling parameter and the no-effect concentration. A similar
results holds for réspiration by non-growing organisms, that use energy mainly to meet
maintenance demands. EC,'s for growth and reproduction relate to the toxicity parameters in a
more complex way, determined by the solution of the DEB model equations. These links are of
considerable practical importance, as they open the possibility of relating our parameters to the
large body of literature describing the observed dependence of EC_s on simple physico-chemical
properties of a toxicant, such as solubility in fat (Donkin et al. 1989) or degree of ionization in
metals (McCloskey et al. 1996).

An alternative approach to modeling toxic effects has been used in previous studies by
Kooijman and co-workers (Kooijman and Bedaux 1996a; Kooijman and Bedaux 1996b;
Kooijman et al. 1996; Kooijman and Metz 1984). These authors use effect functions different
from ours, and differentiate among effects on energy fluxes and conversion efficiencies. In order
to avoid introducing too many parameters, they assume that the effects of toxiants on each flux
differ in physiological cause, so that effects on one flux may be assumed to dominate. It then
suffices to identify this dominant energy flux and to neglect effects on other fluxes. There are
methodological challenges with this approach, as the alternative assumptions often make simiilar
predictions. For example, equally good fits to data on growth and reproduction, may be obtained
from a model that assumes the dominant toxic effect to be on either maintenance, assimilation or
growth efficiency (Kooijman and Bedaux 1996a; Kooijman and Bedaux 1996b). Furthermore, at
least in some cases, we know that both processes can simultaneously be affected, as is
demonstrated by mussels that concommittantly reduce feeding and increase respiration in the
presence of pentachlorophenol (see Figure 3} or tributyltin (Widdows and Page 1993). The
distinction between the two approaches is thus the level of generality that is assumed. Our
representation is less flexible and more general. Future experiments will tell which is the more
useful approach.

Because our modeling framework is modular in structure, it can be amended or changed
depending on specific demands. Toxic effects that are not instantancous and sublethal can be
included by formulating extra rules describing, for instance, mutagenic and teratogenic activity,
and toxicant induced mortality (see Kocijman and Bedaux 1996a, for an example of the latter).
(Note that the present rules for toxic effects include mortality due to toxicant induced starvation,
that is, when assimilation falls short of maintenance.) The inclusion of such toxic effects thus do
not necessarily require new models describing energy budgets or toxicant exchange. Similarly,
the toxic effect functions can be singled out for use in other models. The functions are applicable
to describe toxic effects in any model assuming a maintenance demand and a feeding rate
dependent on food availability. In addition, the functions can be used in other models assuming
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von Bertalanffy growth, since they imply effects on compound parameters, including the ultimate
length and von Bertalanffy growth rate (see equation (12)).

In particular, our toxic effect model carries over seamlessly to the full version of
Kooijman’s DEB model (1993). The full version takes into account the dynamics of storage
compounds and has priority rules for energy expenditure when food is scarce. This version thus
allows an organism to survive in a variable food environment, whereas an organism growing
according to the rules in the present study will immediately die when the instantaneous feeding
rale is too low to meet maintenance demands. Because we have made assumptions on toxic
effects without reference to food availability, our toxic effect functions are applicable in the full
version, not only to describe toxic effects with constant food, but also with dynamic food. When
food conditions are constant, a condition we have assumed to hold in all our analyses, the short
and full versions describe the processes studied in this paper in a completely similar way. For
presentational purposes, we have used the simpler, short version.

With dynamic food, however, the dynamics of the full version of the DEB model are
complex. Increased complexity arises not only because the storage compounds provide a buffer
against environmental fluctuations, leading to complex patterns in growth and reproduction, but
also because they may lead to more complex toxicant dynamics. Lipophilic toxicants are likely to
dissolve in storage materials better than in structure. Thus, a description of the dynamics of
lipophilic toxicants requires a exchange model with multiple compartments when the fat content
of the organism is subject to change, for instance, because of a variable food environment (Van
Haren et al. 1994). Then, the fraction of the toxicants in the body that are toxicologically active
must be identified. It seems unlikely that toxicants that are dissolved in reserve materials are
directly harmful; they need to be mobilized first (Lassiter and Hallam 1990). Therefore, it is
reasonable to take the toxicant concentration in structural biomass as the effective toxicant
concentration; this assumption needs to be tested with experimental data.

Finally, we note that the sublethal effects modeled in this paper may lead to changes in
the dynamics of a population. Such consequences of toxicant action can be understood and
predicted with structured (or individual-based) population models (see Tuljapurkar and Caswell
1997, for structured population models), based on experimentally tested models of individual
performance and toxic effects (Nisbet et al. 1997). The central assumption in these population
models is that all members of the population grow, develop, reproduce and die in accordance
with a dynamic model that describes individual energy agquisition and utilization in any
environment. Structured population models are important practical tools, since they translate data
obtained with relative ease from individuals into population level predictions, while experiments
with populations are expensive, time-consuming, and commonly difficult to interpret because of
the numerous possible responses of individuals to each other and to their environment. The DEB
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model must be testable on individuals, because without rigorous testing of the individual model,
the population model would rest on insecure foundations. Also, the DEB model must be general
and simple, if the resulting structured model is to be mathematically tractable. The model in this
paper meets all these requirements. However, further work is necessary before the model can be
used to study population dynamics. Most important is the need to test predictions on reproductive
output. Another important requirement is the need for better understanding of the relationship
between mortality and energetics. We have work in progress on each of these themes.

ACKNOWLEDGMENTS

We thank Andy Brooks, Sally Holbrook, Ria Hooftman, Chris Klok, Bas Kooijman, Dina Lika,
Erik Noonburg, Craig Osenberg and Russ Schmitt for their advice, data and numerical routines.
This research was supported by the Office of Naval Research (Grant No N00014-93-1-0952), and
by the Minerals Management Service, U.S. Department of the Interior, under MMS Agreement
No. 14-35-0001-30761. The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the official policies, either

express or implied, of the U.S. Government.



Sublethal Effects of Toxicants on Organisms. A Modeling Approach with Dynamic Energy Budgets

REFERENCES

Bayne, B. L. 1976. The Biclogy Of Mussel Larvae. Pages 81-120. in B. L. Bayne editors. Marine
Mussels: Their Ecology And Physiology. Cambridge University Press, Cambridge.

Beiras, R. and His, E. 1994. Effects Of Dissclved Mercury On Embryogenesis, Survival, Growth
And Metamorphosis Of Crassostrea-Gigas Oyster Larvae. Marine Ecology-Progress Series
113:95-103.

Beiras, R. and His, E. 1995. Effects Of Dissolved Mercury On Embryogenesis, Survival And
Growth Of Mpytilus Galloprovincialis Mussel Larvae. Marine Ecology-Progress Series
126:185-189.

Burden, R. L. and Faires, J. D. 1988. Numerical Analysis. PWS-KENT Publishing Company,
Boston.

Byczkowski, J. Z. and Sorenson, I. R. 1984, Effects of metal compounds on mitochondrial
function: a review. Science of the Total Environment 37:133-62.

Donkin, P., Widdows, J., Evans, S. V., Worall, C. M. and Carr, M. 1989. Quantitative structure-
activity relationships for the effect of hydrophobic organic chemicals on rate of feeding by
mussels (Mytilus edulis). Aquatic Toxicology 14:277-294,

Duclaux, E. 1898, Traité de Micrebiologie. Masson et Corpagnie, Paris.

Eby, L. A., Stow, C. A, Hesselberg, R. J. and Kitchell, J. F. 1997. Modeling Changes in Growth
and Diet on Polychlorinated Biphenyl Bioaccumulation in Coregonus hoyi. Ecological
Applications 7:981-990.

Franks, N. P. and Lieb, W. R. 1994. Molecular And Cellular Mechanisms Of General
Anaesthesia. Nature 367:607-614.

Gilek, M., Bjork, N. and Nif, C. 1996. Influence Of Body Size On The Uptake, Depuration, And
Bioaccumulation Of Polychiorinated Biphenyl Congeners By Baltic Sea Blue Mussels,
Mytilus Edulis. Marine Biology 125:499-510.

Hawker, D. W. and Connel, D. W. 1986. Bioconcentration of Lipophilic Compounds by Some
Aquatic Organisms. Ecotoxicology and Environmental Safety 11:184-197.

Hewett, S. W. and Kraft, C. E. 1993. The Relationship between Growth and Consumption:
Comparisons across Fish Populations. Transaction of the American Fisheries Society 122:814-
821.

Hooftman, R. N. and Evers-De Ruiter, A. 1992. The Toxicity And Uptake Of Benzo(k)-
fluoranthene Using Brachydanie rerio In An Early Life StageTest (Draft OECD Guideline).
Report number IMW-R 92/218. TNO IMW, Delft, The Netherlands.

29

138



Final Study Report — Nisbet, Muller

Hooftman, R. N., Henzen, L. and Roza, P. 1993. The Toxicity Of A Polycyclic Aromatic
Hydrocarbon Mixture In An Early Life Stage Toxicity Test Carried Out In An Intermittent
Flow-Through System. Report number IMW-R 93/253. TNO IMW, Delft, The Netherlands.

Jackson, L. J. 1997. Piscivores, Predation, and PCBs in Lake Ontario's Pelagic Foos Web.
Ecological Applications 7:991-1001.

Kesseler, A. and Brand, M. D. 1994. Localisation Of The Sites Of Action Of Cadmium On
Oxidative Phosphorylation In Potato Tuber Mitochondria Using Top-Down Elasticity
Analysis. European Journal Of Biochemistry 225:897-906.

Kitchell, I. F., Koonce, J. F., O'Neill, R. V., Shogart, H. H., Magnuson, J. J. and Booth, R. S,
1974. Model of Fish Biomass Dynamics. Transaction of the American Fisheries Society
103:786-798. _

Kitchell, I. F., Stewart, D. J. and Weininger, D. 1977. Applications of a Bicenergetics Model to
Perch (Perca flavescens) and Walleye (Stizostedion vitreum). Journal of the Fisheries
Research Board of Canada 34;1922-1935,

Klok, C. and De Roos, A. M. 1996. Population Level Consequences Of Toxicological Influences
On Individual Growth And Reproduction In Lumbricus Rubellus (Lumbricidae, Oligochaeta).
Ecotoxicology And Environmental Safety 33:118-127.

Kooi, B. W. and Kooijman, S. A. L. M. 1994, The Transient Behaviour Of Food Chains In
Chemostats. Journal Of Theoretical Biology 170:87-94.

Kooijman, S§. A. L. M. 1993. Dynamic Energy Budgets In Biological Systems. Cambridge
University Press, Cambridge.

Kooijman, S. A. L. M. 1995. The Stoichiometry Of Animal Energetics. Journal Of Theoretical
Biclogy 177:139-149.

Kootjman, S. A. L. M. and Bedaux, J. J. M. 1996a. Analysis Of Toxicity Tests On Daphnia
Survival And Reproduction. Water Research 30:1711-1723.

Kooijman, S. A. L. M. and Bedaux, J. J. M. 1996b. Analysis Of Toxicity Tests On Fish Growth.
Water Research 30:1633-1644.

Kooijman, S. A. L. M. and Bedaux, J. J. M. 1996¢. Some Statistical Properties Of Estimates Of
No-Effect Concentrations. Water Research 30:1724-1728.

Kooijman, S. A. L. M., Hanstveit, A. 0. and Nyholm, N. 1996. No-Effect Concentrations In
Algal Growth Inhibition Tests. Water Research 30:1625-1632.

Kooijman, S. A. L. M. and Metz, J. A. J. 1984. On The Dynamics Of Chemically Stresses
Populations: The Deduction Of Population Consequences From Effects On Individuals.
Ecotoxicology And Environmental Safety 8:254-274.

30

139



Sublethal Effects of Toxicants on Organisms. A Modeling Approach with Dynamic Energy Budgets

Kooiyman, S. A. L. M., Muller, E. B. and Stouthamer, A. H. 1991. Microbial Growth Dynamics
On The Basis Of Individual Budgets. Antonie Van Leecuwenhoek International Journal Of
General And Molecular Microbiology 60:159-174.

Kooijman, S. A. L. M. and Vanharen, R. I. F. 1990. Animal Energy Budgets Affect The Kinetics
Of Xenobiotics. Chemosphere 21:681-693,

Landrum, P. F., Lee, H. and Lydy, M. J. 1992. Toxicokinetics In Aquatic Systems - Model
Comparisons And Use In Hazard Assessment. Environmental Toxicology And Chemistry
11:1709-1725.

Lassiter, R. R. and Hallam, T. G. 1990. Survival Of The Fattest - Implications For Acute Effects
Of Lipophilic Chemicals On Aquatic Population. Environmental Toxicology And Chemistry
9:585-595.

Lea, D. W. and Spero, H. J. 1992. Experimental Determination Of Barium Uptake In Shells Of
The Planktontc Foraminifera Orbulina-Universa At 22-Degrees-C. Geochimica Et
Cosmochimica Acta 56:2673-2680.

Mackay, D., Ph. D., Shiu, W. Y. and Ma, K. C. 1992. Tllustrated handbook of physical-chemical
properties and environmental fate for organic chemicals. Lewis Publishers, Boca Raton.

Marr, A. G, Nilson, E. H. and Clark, D. J. 1962. The Maintenance Requirement of Escherichia
coli. Annals of the New York Academy of Sciences 102:536-548.

McCauley, E., Murdoch, W. W, Nisbet, R. M. and Gurney, W. S. C. 1990. The Physiological
Ecology Of Daphnia - Development Of A Meodel Of Growth And Reproduction. Ecology
71:703-715.

McCioskey, J. T., Newman, M. C. and Clark, S. B. 1996. Predicting The Relative Toxicity Of
Metal Ions Using Ion Characteristics - Microtox(R) Bioluminescence Assay. Environmental
Toxicology And Chemistry 15:1730-1737.

Monod, J. 1950. La Technique de Culture Continue; Théory et Applications. Annales de
L'Tostitute Pasteur 79:390-410.

Nisbet, R. M., Muller, E. B., Brooks, A. I. and Hosseini, P. 1997. Models Relating Individual
and Population Response to Contaminants. Environmental Modeling and Assessment 2:7-12.
Osenberg, C. W., Schmitt, R. J., Holbrook, 8. J. and Canestro, D. 1992, Spatial scale of
ecological effects associated with an open coast discharge of produced water. Pages 387-402.
tn J. P. Ray and F. R. Engelhardts, editors. Produced water: technological/environmental

issues and solutions. Plenum Press, New York.

Pirt, 5. J. 1965. The Maintenance Energy of Bacteria in Growing Cultures. Proceedings of the
Royal Society London B163:224-231.

Ross, A. H. and Nisbet, R. M. 1990. Dynamic Models Of Growth And Reproduction Of The
Mussel Mytilus-Edulis L. Functional Ecology 4:777-787.

31

140



Final Study Report — Nisbet, Muller

Segel, L H. 1993. Enzyme Kinetics; Behavior and Analysis of Rapid Equilibrium and Steady-
State Enzyme Systems. John Wiley & Sons, New York.

Shannon, R. D., Boardman, G. D., Dietrich, A. M. and Bevan, D. R. 1991. Mitochondrial
Response To Chlorophenols As A Short-Term Toxicity Assay. Environmental Toxicology
And Chemistry 10:57-66.

Sikkema, J., Debont, J. A. M. and Poolman, B. 1995. Mechanisms Of Membrane Toxicity Of
Hydrocarbons. Microbiological Reviews 59:201-222.

Tuljapurkar, S. and Caswell, H. 1997. Structured-Population Models in Marine, Terrestrial, and
Freshwater Systems. Population and Community Biology Series,

, vol. 18. Chapman & Hall, New York,

Van Haren, R. J. F. and Kooijman, S. A. L. M. 1993, Application Of A Dynamic Energy Budget
Model To Mytilus-Edulis (L). Netherlands Journal Of Sea Research 31:119-133.

Van Haren, R. J. F., Schepers, H. E. and Kooijman, S. A. L. M. 1994. Dynamic Energy Budgets
Affect Kinetics Of Xenobiotics In The Marine Mussel Mytilus-Edulis. Chemosphere 29:163-
189.

Van Wezel, A. P. and Opperhuizen, A. 1995. Narcosis Due To Environmental Pollutants In
Agquatic Organisms - Residue-Based Toxicity, Mechanisms, And Membrane Burdens. Critical
Reviews In Toxicology 25:255-279.

Verhaar, H. J. M., Vanleeuwen, C. J. and Hermens, J. L. M. 1992. Classifying Environmental
Pollutants .1. Structure-Activity Relationships For Prediction Of Aquatic Toxicity.
Chemosphere 25:471-491.

Walker, C. H., Hopkin, S. P., Sibly, R. M. and Peakall, D. B. 1996. Principles of Ecotoxicology.
Taylor and Francis, London.

Wang, W. X. and Widdows, J. 1993. Metabolic Responses Of The Common Mussel Mytilus-
Edulis To Hypoxia And Anoxia. Marine Ecology-Progress Series 95:205-214.

Widdows, J. and Donkin, P. 1991. Role Of Physiological Energetics In Ecotoxicology.
Comparative Biochemistry And Physiology C-Comparative Pharmacology And Toxicology
100:69-75.

Widdows, J. and Page, D. 8. 1993. Effects Of Tributyltin And Dibutyltin On The Physiological
Energetics Of The Mussel, Mytilus-Edulis. Marine Environmental Research 35:233-249.

32

141



Sublethal Effects of Toxicants on Organisms. A Modeling Approach with Dynamic Energy Budgets

Symbols and abbreviations.
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TABLE 1 (continued)
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Parameter values with standard errors estimated from growth data.

Table 2
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Energy flows in the dynamic energy budget model.

Figure 1
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Figure 2 Mitochondrial activity is reduced in the presence of heavy metals or lipophilic
toxicants. (a) The rate of oxygen reduction for ATP production is a hyperbolic function of the
free cadmium concentration. Data are fitted assuming non-competitive inhibition kinetics (see
text). Oxygen consumption for ATP formation in absence of cadmium is 135.5 (= 2.7) nmol O.
mg protein”. min”, and K, = 15.3 (= 1.1) uM (data from Kesseler and Brand 1994). (b) The
oxygen reduction rate as hyperbolic functions of the 2.4,6-trichlorophenol (O0—Q) or 2,4-
dinitrophenol (®- - -®) concentration. Oxygen consumption for ATP formation in absence of
TCP and DNP are 216.1 (x 4.4) and 185.6 (+ 0.8) nmol O. mg protein”. min™, respectively, and
K =37.5(x3.4) and 69.9 (+ 2.2) pM, respectively (data from Shannon et al. 1991).
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FIGURE 2b
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Figure 3 Feeding and respiration by Mytilus edulis is affected by toxicants. (a) Scaled
clearance rate as a function of the ambient toluene concentration. Data are fitted with equation
(11) giving C,. = 10.78 (+ 0.02) uM and K = 10.431 (x 0.05) pM (data from Widdows and
Donkin) (data from Donkin et al. 1989). (b) Scaled clearance rate () and scaled oxygen
consumption rate (®) as a function of the pentachlorophenol content in tissue. With exclusion of

the data at the highest PCP concentration (see text) and [Q ] fixed at zero, the parameters

nec

estimated with equation (11) and (6) are K, = 55.4 (x 8.0) nmol. g" and the compound parameter
p =091 (x 0.48) (data from Widdows and Denkin 1991).
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FIGURE 3b

scaled oxygen consumption rate
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Figure 4 Growth of larvae of (a) Crassostrea gigas and (b) Mytilus galloprovencialis at
nominal mercury concentrations of 0 (Q), 5 (@), 10 (O0), 20 (M), and 40 (%) nM. Two model fits
are shown. First, mercury is assumed to be fully retained in the larvae, and data are fitted with
equation (4) and (12) while reconstructing the mercury levels in tissue with equation (10) (broken
lines). Alternatively, mercury s assumed to be rapidly removed from the larvae, leading to tissue
levels that are always in equilibrium with the ambient concentration, in which case data are fitted
with equation (5) and (12) (solid lines). With the latter method, the growth curves at 0 and 5 nM
mercury are (almost) identical and thus plotted on top of each other. Parameter estimates are
listed in Table 2 (data from Beiras and His 1994; Beiras and His 1995).
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FIGURE 4b
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Figure 5 Growth of the earthworm Lumbricus rubellus in soils contaminated with copper.
Note that size is expressed in wet weight rather than a length measure. The copper contents of
soil are 0.2 (), 0.9 (@), 2.3 (O) and 5.7 (W) pmol per gram dry weight. The fits represent two
extreme cases for toxicant removal. Either copper is fully retained in the earthworms, in which
case data are fitted with equation (4) and (12) while reconstructing the copper levels in tissue
with equation (10) (broken lines). Or copper is rapidly removed from the earthworms, leading to
tissue levels always being in equilibrium with the ambient concentration, in which case data are
fitted with equation (5) and (12) (solid lines). Parameters are given in Table 2 (data from Ma,
cited in Klok and De Roos 1996)
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Figure 6 Length of the zebrafish Brachydanic rerio after 37 days of exposure to (a) benzo(k)-
fluoranthene and (b) a mixture of polycyclic aromatic hydrocarbons, which contained at the
highest dose the no observed effect concentration of 6 PAH’s: 18 nM phenanthrene, 49 nM
fluoranthene, 0.7 nM benzo(k)fluoranthene, 7.9 nM chrysene, 40 nM benzo(a)pyrene and 1.2 nM
benzo(ghi)perylene. The data are fitted with equation (5); parameters are listed in Table 2 (data
from Hooftman and Evers-De Ruiter 1992; Hooftman et al. 1993).
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FIGURE 6b
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Figure 7 Growth of Mytilus californianus at six locations near oil producing platforms in the
Santa Barbara Channel, California. The points are averages of measurements on 4 or 5 animals,
the error bars are standard deviations. The grey curves in the upper panel are the fits from the
lower panel, and vice versa. The increase in size after 119 days of exposure is fitted with
equation (5) as a function of the barium content in newly formed shell, which are 18.4 (O—Q),
16.8 (®- — -®) and 14.2 (OJ----00) nmol. g"* (a), and 5.6 (0—Q), 4.7 (®— — —®) and 3.7 ([----
0) nmol. g (b). Parameter estimates are: K =827 (x7.3)nmol. g Lwo=73(z02}cm; and 1
=3.1(x0.2) 107 day” (data from Osenberg et al. 1992).
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FIGURE 7b
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Figure 8 Growth of Mytilus edulis at six locations near oil producing platforms in the Santa
Barbara Channel, California. The points are averages of measurements on 4 or 5 animals, the
error bars are standard deviations. The grey curves in the upper panel are the fits from the lower
panel, and vice versa. The increase in size after 119 days of exposure is fitted with equation (5)
as a function of the barium content in newly formed shell, which are 13.51 (O0—Q), 13.47 (®—-—
—@) and 13.11 (O----00) nmol. g' (a), and 7.21 (O—Q), 4.88 (@- — —@) and 3.86 (O-—-[1)
nmol. g' (b). Parameter estimates are: K, = 186.4 (+ 54.5) nmol. g; Lep=8.7(x0.5) cm; and
=3.5(+0.3) 107 day™ (data from Osenberg et al. 1992).
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Figure 9 The lifetime performance of a ten year old mussel depends strongly on the presence
of toxic compounds. Growth (—) and lifetime reproductive output (- - - -), scaled to the
performance of an individual living in a clean environment, have been calculated using the
concentration of a toxicant scaled to its toxicity parameter, K. It is assumed that the toxicant
concentration in the body had been in equilibrium with the ambient concentration at all times,
and that environmental conditions had been constant. Parameter values are taken from van Haren

et al. (1993).
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4" ESTMB meeting, SMB Annual meeting, Amsterdam, July 1999
Predictive Power of Simple Population Models Based on Dynamic Energy Budgets.
R.M. Nisbet, E. McCauley, W.5.C. Gurney, A.M. de Roos, W.W. Murdoch

Although individual-based population models may take account of species-specific
details of the physiology and behavior of individual organisms, ecological theory aims at
generality. Simple dynamic energy budget (DEB) models provide a basis for general
theory relating individual physiology to population dynamics, but the theory is largely
untested. We here report work where DEB models are tested against data on individual
physiology, and then used to predict population dynamics. The predictions are compared
with experimental results for the zooplankter \emph{Daphnia} by ourselves and others.
We test a DEB model of growth and reproduction by fitting data describing individuals
grown in isolation, and then comparing fitted values of parameters characterizing
physiological rates to independently measured values. The DEB mode! assumptions,
together with an assumption of age-and size-independent mortality, define a structured
population model, which can be expressed in terms of a small number of ordinary
differential equations. With no new adjustable parameters, the model correctly predicts
equilibrium biomasses in laboratory populations. It correctly predicts the equilibrium
density of “edible algae” in the field, and explains the outcome of laboratory studies of
competition between two zooplankton species. The model makes incorrect predictions
on population size-structure. The work provides some empirical justification for the use
of simple models to predict the effects of environmental stress, and helps define their
limitations.
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4™ ESTMB meeting, SMB Annual meeting, Amsterdam, July 1999
A Dynamic Energy Budget Model based on Partitioning of Net Production
Authors: Konstadia Lika* and Roger Nisbet

Dynamic energy Budget (DEB) models describe the rates at which an
individual organism acquires energy from its environment and utilizes

it for physiological processes related to maintenance, growth and reproduction. DEB
models constitute a basis for developing physiological structured models.
Most DEB models in the literature fall into one of two families: the

{\it net assimilation} and {\it net production} models. The two groups of
models differ mainly in their assumptions concerning allocation of energy.
Gurney et al. [1] found that different energy allocation

strategies result in different behavior at the population level.

The most complete body of theory to date for DEB models exists for a

net assimilation model developed by Kooijman [2].

Net production models, although they have been more widely used,

have been formulated only for juveniles and adults (feeding stages).

We formulate a net production model in a way that covers feeding and

non feeding stages of an organism, so that further testing of the two

energy allocation strategies can be made. The model is based on partitioning of net
production (i.e. energy acquisition rate minus maintenance rate) between growth and
energy reserves. It is applicable to embryos (which neither feed nor reproduce), juveniles
(which feed but do not reproduce), and adults (which commonly both feed

and reproduce). Under constant environmental conditions, the growth of

a juvenile is always of von Bertalanffy type. Depending on the values of

model parameters there are two long-time possibilities for adults:

(a) von Bertalanffy growth accompanied by reproduction at a rate that

approaches zero as the organism approaches asymptotic size,

or (b) abrupt cessation of growth at some finite time, following which,

the rate of reproduction is constant. We illustrate the model's

applicability in life history theory by studying the optimum values of the energy
allocation parameters for each of the dynamic regimes described above.

[1] W.5.C. Gurney, D.A.J. Middleton, R.M. Nisbet, E. McCauley, W.W. Murdoch,
and A.M. de Roos, Individual energetics and the equilibrium demography of
structured

populations, {\it Theoretical Population Biology}, 49:344-368,1996.

[2] S.A.L.M Kooijman, Dynamic Energy Budgets in Biological Systems.
Theory and Applicationsn in Ecotoxicology, Cambridge University Press, 1993,
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4™ ESTMB meeting, SMB Annual meeting, Amsterdam, July 1999

and
Annual meeting of The Ecological Society of America, Spokane, 1999

Living with variable food; survival and production in a dynamic energy budget (DEB)
model for individuals.

E.B. Muller, R.M. Nisbet

A dynamic energy budget (DEB) model describes the rates at which organisms assimilate
and utilize energy from food for maintenance, growth, reproduction and development.
These rates depend on the state of the organism and of its environment. Despite being
dynamic, DEB models are most often used in constant environments, either real or
assumed. We study the dynamic behavior of a particularly extensive DEB model,
Kooijman's KAPPA-rule model (1993, Dynamic Energy Budgets in Biological Systems,
Cambridge University Press, New York), which has a key assumption that somatic and
reproductive tissues are competing for energy. We assume an environment in which the
scaled food density (type 11} fluctuates either periodically or stochastically (pink noise).
With both fluctations, and on the provision of survival, organisms grow more (on
average) than their conspecifics growing in an average constant food environment, and
this increase is a function of the intensity of the fluctuations. The intensity of the
fluctations reduces the (average) lifespan. Reproduction shows a more complex picture,
With pertodic food, strong fluctations enhance reproduction in organisms that favor
reproduction over growth, but reduce reproduction in organisms that give higher priority
to growth. With stochastic food, reproduction in surviving individuals increases with the
intensity of the food fluctuations, but the reproductive effort of a cohort may decline.
These results illustrate the flexibility of the KAPPA-rule model.
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American Society of Limnology and Oceonagraphy, Alburquerque, February 2001

Nisbet, R.M. EEMB, University of California, Santa Barbara, CA 93106.

Muller, E.B., EEMB, University of California, Santa Barbara, CA 93106.
McCauley, E. , Biological Sciences, Univ. of Calgary, Calgary, Canada.

Kooijman, S.A.L.M, Dept. Theoretical Biology, Vrije Universiteit, Amsterdam, The
Netherlands.

Elser, J.J., Dept. Biology, Arizona State University, Tempe, AZ 85287.

MODELING THE EFFECTS OF HERBIVORE STOICHIOMETRY ON THE
STABILITY OF PLANT-HERBIVORE SYSTEMS

There is a growing body of evidence suggesting that regulation of C:N:P ratios within
herbivores affects recycling rates of N and P, growth of herbivores, population
dynamics, and herbivore community structure. Previous work by T. Andersen on simple
models of zooplankton and their algal food has shown that nutrient limitation of
herbivore growth may lead to herbivore extinction, the precise conditions depending on
(a) the ratio of the minimum nutrient quota of the algae to the (fixed) quota in the
herbivore, and (b) the relationship between herbivore growth rate and algal quota. We
generalize these findings by developing mechanistic representations of herbivore growth
that use the concept of synthesizing unit, recently proposed by S.A.L.M. Kooijman. We
find that the viability of the herbivore population depends strongly on the details of
assumptions regarding feeding, assimilation and maintenance, and mortality.

S5S519
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Nisbet, R.M.

163



Sublethal Effects of Toxicants on Organisms. A Modeling Approach with Dynamic Energy Budgets

164



The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most
of our nationally owned public lands and natural resources. This includes fostering sound use of our
land and water resources; protecting our fish, wildlife, and biological diversity; preserving the
environmental and cultural values of our national parks and historical places; and providing for the
enjoyment of life through outdoor recreation. The Department assesses our energy and mineral
resources and works to ensure that their development is in the best interests of all our people by
encouraging stewardship and citizen participation in their care. The Department also has a major
responsibility for American Indian reservation communities and for people who live in island territories
under U.S. administration.

The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service's (MMS) primary
responsibilities are to manage the mineral resources located on the Nation's Outer Continental Shelf
(OCS), collect revenue from the Federal OCS and onshore Federal and Indian lands, and distribute
those revenues.

Moreover, in working to meet its responsibilities, the Offshore Minerals Management Program
administers the OCS competitive leasing program and oversees the safe and environmentally sound
exploration and production of our Nation's offshore natural gas, oil and other mineral resources. The
MMS Royalty Management Program meets its responsibilities by ensuring the efficient, timely and
accurate collection and disbursement of revenue from mineral leasing and production due to Indian
tribes and allottees, States and the U.S. Treasury.

The MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being
responsive to the public's concerns and interests by maintaining a dialogue with all potentially affected
parties and (2) carrying out its programs with an emphasis on working to enhance the quality of life for
all Americans by lending MMS assistance and expertise to economic development and environmental
protection.



