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BACKGROUND: Three types of decision in the management of offshore mineral resources
are: whether to accept, modify or reject a proposed development (e.g., an oil platform),
whether to continue, modify or discontinue an ongoing operation, and whether an operation
has caused such damage that penalties or mitigation should be required. The second and third
types often depend on monitoring assessment: determining the effects of a development after
a period of operation. Many environmental variables, like population abundances, fluctuate
naturally over time even without anthropogenic intervention, so assessments need to deal with
time series where both serial correlation and systematic (e.g., seasonal) variation are likely.

OBJECTIVES: The main aims of these two programs have been:

(1) to develop ways to estimate or describe effects of an "alteration" of the environment on
naturally fluctuating biological variables, using one or more neighboring, similar "control"
sites to reduce and estimate the effects of natural temporal variation on these estimates;

(2) to test the methods on real data, from the annual surveys of the Channel Islands National
Park Service: specifically, to see whether neighboring, similar sites can be used to predict
each other's fluctuations over time, such that the temporal variation and serial correlation of
the residuals from the prediction are smaller than those of the original data.

DESCRIPTION: Two related methods were studied. One uses the difference between
values observed at the "Impact" site and those observed at the controls. The values at the sites
might be transformed, and multiple values from a set of controls can be averaged or otherwise
summarized. The other method uses control values as covariates; in effect, it finds equations
for predicting Impact values from control values under "before alteration" conditions and
compares their predictions with either the predictions of the corresponding equations under
"after" conditions or with the actual values of the sites observed after the alteration is in place.
In this project, our main aim has been to develop and explain the broad approach, dealing
with objections and misunderstandings, and explaining why some other approaches, which do
not account for variation over time, do not separate natural variation from human effects.

The Channel Islands data are annual surveys of about 70 species at 13 sites since 1981; a
further site was added in 1983 and two more in 1986. Some species have been added and
others dropped over the years. There are data on size and recruitment, but we have worked
mainly with the abundance data for three groups, "band" , "quad" and "rpc" (the names refer
to the sampling method). At each site, all samples use a single 100-metre transect. The
positions on this transect are chosen anew each year, by choosing a random point and spacing
positions equally from it to each end. The "band" species are sampled by counting in bands
(currently 3X20m but this has varied) across the transect at the chosen positions. The "quad"
species are sampled by counts in quadrats (currently 2m? but this has varied), and the "rpc"
species by the fractions of contacts with (currently) 40 points on the boundaries of two
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concentric ellipses. Our main efforts here have gone into finding ways to summarize the data
to check the idea that data from "similar" sites might have similar fluctuations. We have used
plots and correlations for combinations of species, pairs and triples of sites, and
transformations (raw data, logs, reciprocals, etc.), but there are so many possibilities that we
need ways to summarize these summaries.

SIGNIFICANT CONCLUSIONS: 1. An explicit, unambiguous definition of an "effect" is
needed for design and interpretation of assessments. A few approaches and critiques use an
explicit definition which is flawed. An example is "Impacts are those disturbances that cause
mean abundance in a site to change more than is found on average" (Underwood 1992:
Journal of Experimental Marine Biology and Ecology, 161, p. 152). The "mean" and
"average" are undefined: in fact, the "mean" is implicitly taken to be the mean over the study
period (thus not allowing for natural fluctuation over a time period of this length), and the
average is over a "population" of sites which must be chosen subjectively - in practice,
usually implicitly. Many other studies use implicit definitions with similar flaws. The
definition of an effect should refer only to the alteration site, since a given effect is not
changed if unaffected sites are naturally very different from this site. If other sites are similar
to the alteration site, they can be used to improve estimation of the effect, but not to define it.

2. There may not be a single "best" use of "control" sites. The most direct use is by
differences or as covariates (see DESCRIPTION), but this involves a tradeoff between
reducing the effects of large, long-term natural fluctuations, assumed to be widespread, and
increasing the effect of short term, local variation and sampling error. This can be beneficial
even when the apparent error of effect estimates seems to increase, because the apparent error
is likely to underestimate the variation due to long-term fluctuations. However, the control
site that best reduces these fluctuations may be different for different species. There may be
no control site similar enough to do it well. There may be no large, long-term fluctuations, or
some that are local but too rare or irregular to be allowed for in a time series model.

STUDY RESULTS: 1. In papers 2, 6 and especially 5 below, we have defined an effect as
the difference between the average abundance at the Impact site over some long period, such
as the life-length of the alteration, and the average that would have been obtained without the
alteration. We then show that, in principle, time series methods can be used to estimate this
difference and give an estimate of uncertainty.

2. The Channel Islands data illustrate several of the difficulties in the use of control sites (see
CONCLUSIONS). Some pairs of close sites have high correlations for some species, but the
relation between correlation and distance is weak, for any obvious meaning of "distance". For
example, maps with lines joining sites with correlations > x (for various x) show plenty of
lines connecting distant sites, and sites facing north to sites facing south. Sampling error is
part of the cause: most of the time series are best fitted as independent observations.

Variation over the replicate quadrats, is usually much smaller than the variation over time, but
it does not include the error in the fixed 100m transect as an estimate for the site. Another
cause may be that the sites were deliberately chosen to give as broad a range of conditions as
possible - and thus to be dissimilar from each other. The study continues by comparing series
from the first 50m of the 100m transect to the series given by subtracting the second half from
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it: the series have very similar variance and correlation properties, though the difference series
is fitted by independent observations more often. Two broad alternatives when sampling
error is high are (1) to analyze "Impact only" time series, using neighboring sites less formally
to rule out alternative explanations for an observed effect, and (2) to use time series models
derived from simple population dynamics models.

STUDY PRODUCTS:
Stewart-Oaten, A. 1996a. Goals in environmental monitoring. (In Detecting Ecological
Impacts, C. Osenberg and R. J. Schmitt, eds, Academic Press.)

Stewart-Oaten, A. 1996b. Problems in the analysis of environmental monitoring data. 1996.
(In Detecting Ecological Impacts, C. Osenberg and R. J. Schmitt, eds, Academic
Press.)

Bence, J. R., A. Stewart-Oaten and S. C. Schroeter. 1996. Estimating the size of an effect
from a Before-After-Control-Impact-Pairs design: the predictive approach applied to a
power plant study. (In Detecting Ecological Impacts, C. Osenberg and R. J. Schmitt,
eds, Academic Press.)

Stewart-Oaten, A. 1996¢. Sequential Estimation of log(Abundance). Biometrics 52: 38-49.

Stewart-Oaten, A. and J. R. Bence. 2001. Temporal and Spatial Variation in Environmental
Impact Assessment. Ecological Monographs, 71: 305-339.

Stewart-Oaten, A. 2001a. Impact assessment. Encyclopedia of Environmetrics. (Wiley
2001).

Stewart-Oaten, A. 2001b. Pseudoreplication. Encyclopedia of Environmetrics. (Wiley
2001).
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CHAPTER 2

GOALS IN ENVIRONMENTAL MONITORING

Allan Stewart-Oaten

The goals of analyses of data on human environmental impacts (“interven-
tions”) vary among investigators. Many analyses aim only at description. The
data are manipulated to display some suggestive patterns, and the patterns are
taken as demonstrating the effects of interest or concern. Such “survey and
explain” studies make little or no effort to distinguish the observed patterns from
patterns that could have arisen from natural fluctuations or from sampling error
(Carney 1987).

Several authors, notably Green (1979) and Carney (1987), stress the impor-
tance of formal “confirmatory” statistical methods, such as tests of null hypothe-
ses, or confidence intervals and regions. These differ from “exploratory” meth-
ods by supplying objective rules for assessing uncertainty in the results, using
procedures whose long-run properties (e.g., the probability of false rejection, or
of covering the true value) are known (at least approximately) under plausible
assumptions.

Measuring the reliability of conclusions is not the only benefit of confirmatory
methods. They improve sampling design by forcing investigators to define
“impact” and account for natural variation, and promote clarity by forcing them
to organize the data in standardized ways, to state explicitly the models underly-
ing fhe analyses, and to assess whether these models are appropriate. These
requirements may help later workers by facilitating the developrient of a stan-
dardized cumulative data base, helping focus future studies on the more likely
effects, improving sampling designs and analytical models, and reducing prob-
lems of gross errors (e.g., in data entry).

For many biologists, “formal statistical methods” means hypothesis tests,
which are often thought of as a rigorous, objective way of making decisions. I
:Lgrlle t!l‘etre that hypothesis tests are usually poor ways to make decisions, that the
tionSOWi:;‘rmal analyses of monitoring datz.x ghould not be dgcisions but descrip-
s allov'vance for error, and that this is best accomplished by confidence

Or regions, not hypothesis tests.

"8 Ecological impacts: Con,

cepts and Applications in Coastal Habitats, edited by R. J. Schmitt and C. W. Osenbe;
© 1996 by Academic P, e

ress, Inc. All rights of reproduction in any form reserved. 17
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A Case for Confidence Intervals

Tukey (1960) makes a useful distinction between conclusions and decisions.
Roughly, this is the distinction between choosing what to believe and choosing
how to act. Conclusions are statements we accept until unusually strong contra-
dictory evidence appears: they are “subject to future rejection” and are “judged
by their long-run effects, by their ‘truth’, not by specific consequences of specific
actions.” Further distinctions are made between statistical and experimenter’s
conclusions (the latter involving more uncertainty, because of the possibility of
systematic error) and between qualitative and quantitative conclusions (the
former judging the truth of a single assertion about a parameter, the latter
presenting a region where its value is believed to lie).

Decisions are choices of actions, determined by our assessment of their prob-
able consequences in a specific situation. They may mimic conclusions—that is,
we may choose to act as if a particular conclusion is true—but we make some
decisions without any evidence at all, and we may reasonably make decisions
implying opposite conclusions (e.g., to carry life insurance and also to save for
retirement).

In the subsections below, I argue that (a) hypothesis tests are not well suited
to decision making; (b) what is really wanted from biologists, ecologists and bio-
logical data analysts in environmental monitoring is not decisions but conclu-
sions (including the allowance to be made for error) which can become part of
the basis for decision making, usually by others; (c) the conclusions should not
be results of significance tests because these carry too little information, e.g.,
about effect size, and are confusing; and (d) confidence intervals provide clear
and informative conclusions, though they may need to be augmented to allow for
uncertainty not considered in the formal framework.

Hypothesis Tests and Statistical Decisions

The inadequacy of statistical hypothesis testing for making decisions was rec-
ognized by the founders of the predominant methodology:

The sum total of the reasons which will weigh with the investigator in accepting
or rejecting the hypothesis can very rarely be expressed in numerical terms. All that is
possible ... is to balance the results of a mathematical summary ... against other less precise
impressions. ... The tests themselves give no final verdict, but as tools help the worker who :
is using them to form his final decision ... (Neyman and Pearson 1928). |

!
Among these less precise impressions are “a priori or a posteriori considera- |
tions,” as stressed by Bayesians. A later paper recognizes the costs of wrong |

decisions:

If we reject Hy, we may reject it when it is true; if we accept H,, we may be accepting it
when it is false ... in some cases it is more important to avoid the first, in others the second.
... Is it more serious to convict an innocent man or to acquit a guilty? That will depend on the
consequences of the error. ... The use of these statistical tools in any given case, in !
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determining just how the balance should be struck, must be left to the investigator
(Neyman and Pearson 1933).

Despite these cautions, the Neyman-Pearson theory does seem to have been
intended as a decision-making system, as evidenced by the use of acceptance
sampling, clearly a decision setup, as a paradigm (Neyman and Pearson 1936)
and by Neyman’s later advocacy of “inductive behavior” (e.g., Neyman 1957,
1962). Together with game theory, it laid the groundwork for the more compre-
hensive theory of decision making under uncertainty developed by Wald (1950).
This posed the problem of choosing from among a set of actions, A, when the
gain of choosing act a is G(a,s), where s is the “state of Nature,” known only to
be a member of a set, S. Data analysis enters if we are allowed to observe a vari-
able, X, whose distribution, P; depends on s. The task then is to choose a deci-
sion function, 8, which selects an action, 3(X), for each X, so as to maximize the
expected gain, [G(3(X),s)Py(dX). To pose hypothesis testing as a decision prob-
lem, S is the set of possible values of the true parameter (e.g., the mean of a pop-
ulation), H asserts that this parameter is in some subset of S, the set of actions
is A = {“accept H", “reject Hy}, and the gain may be 0 if we choose correctly
but some negative number (depending on the true s) if we do not; X may be the
values in a sample from the population whose mean is s.

For all but the simplest problems (e.g., testing a simple hypothesis against a
simple alternative), there is no best solution: even with the observed X, the gain
depends on the unknown value of s. There are various types of “good” solutions,
such as minimax (the solution whose worst result is least bad) and admissible (a
solution such that no other solution does at least as well for every s, and better
for at least one s5). An important type of admissible solution is the Bayesian: a
solution whose expected gain, averaged over S according to some distribution p,
ie, Jf G(3(X),s)P(dX)p(ds), is largest. If p is known, then Bayes’ theorem can
be used to rewrite this integral as [ G(3(X),s)p(dsIX)P(dX), where p(.IX) is the
conditional distribution of s given X, and P is the unconditional distribution of X;
the “best” 3(X) can then be chosen to be the action that maximizes the inner inte-
gral. Controversy arises here over the determination, or even the existence, of p,
the “prior” distribution on the states. It is usually not possible to interpret this as
a distribution in the frequentist sense, i.e., as given by the relative frequency of
various outcomes in a long run of trials. But this “objectivist” interpretation of
Pfopability is not the only one. One alternative is the “personalistic” view, in
“.'hlch probability measures the confidence that an individual has in some propo-
sition. From this basis, Savage (1954) developed and persuasively advocated a
Bayesian approach to statistical inference and decision making. Shorter or more
gentle accounts of this work are given by Edwards et al. (1963) and Pratt et al.
(1965a, 1965b).

BaNeym.an-Pearson inference, Wald’s decision theory, and Savage’s
" i’ﬁlamsm have.all spawned large literatures and many useful insights and
chniques. There is no consensus on a “best” approach: many statisticians will
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mix fields, e.g., using Bayesian methods to make inferences with good Neyman-
Pearson properties. A minority would add Fisher’s (1937, 1956) fiducial
inference to the list. Some feeling for the variety of positions, the main
arguments, and perhaps the areas of general agreement can be found in the
special issue of Synthese (1977).

Tukey (1960) sees the Neyman-Pearson theory of hypothesis testing as a step
toward a theory of decision making but “if this view is correct, Wald’s decision
theory now does much more nearly what tests of hypotheses were intended to do.
Indeed, there are three ways in which it does better””: focusing on gains or losses
(rather than error probabilities), considering a wider range of setups with less
stringent assumptions, and showing that there will not be “a single best proce-
dure but rather an assortment of good procedures ... from which judgment and
insight ... (perhaps best expressed in the form of an a priori distribution) must
be used to select the ‘best’ procedure.” However, aspects of the Neyman-Pearson
theory, such as the power function and confidence procedures, remain valuable,
along with tests of significance, in “conclusion theory”.

These views seem broadly accepted by statisticians. They are not unchal-
lenged, but in most disciplines involving data-based decision making (e.g.,
statistics, economics, business and engineering), the dissenters would give the
Neyman-Pearson theory a smaller role, not a larger one. They would apply some
form of decision theory, most often Bayesian, to conclusions as well as decisions.

However, biology is a holdout of the “P-value culture” (Nelder 1991).
Hypothesis testing is presented as a decision problem and treated as the only way
to deal quantitatively with uncertainty, whether of conclusions or decisions.
Conversely, decision problems are frequently forced, with great effort and
ingenuity, into the hypothesis testing mold. The achievements of 50 years of
decision theory are not rejected but simply ignored altogether: like trying to use
an ax to do fine woodwork, while ignoring the band saw.

Conclusions, Not Decisions

In pure research, we usually need conclusions, not decisions. Environmental
monitoring is not pure research, and its ultimate aim is decision making, but here,
too, the role of scientific investigators and data analysts is to present conclusions
which become part (and only part) of the basis for decision making.

The ultimate decisions are usually not made by the investigator. In pure
research, investigators decide what to study and how to study it, but the result is
a set of conclusions; others (referees, editors, funding agencies and readers)
decide whether to accept the conclusions, or to publish them, or to make or fund
further studies because of them. Their main function is to “reduce the spread of
the bundle of working hypotheses which are regarded as still consistent with the
observations” (Tukey 1960).

In monitoring, investigators often have even less discretion. Managers and
review boards often decide what to study, considering not only scientific interest
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and feasibility but also commerce, aesthetics, public interest, and the law. More
important, they also make final decisions, e.g., concerning shutdown, redesign,
operational changes, mitigation, or penalties, except when these decisions are
removed even further from the investigators, into negotiations, the courts, or the
legislature.

These decisions rarely depend on a single variable. Biological effects can be
of many kinds (abundance, average size, demographic or sex ratios, etc.) on
many_species. None of these is likely to be decisive, except for rare instances of
dramatic reduction of an important or popular species over a wide range. Indeed,
the totality of all biological effects may not be decisive: final decisions will also
depend on an array of economic, legal, political, and social goals and require-
ments, many of them unwritten.

Even for a single variable, the analysis of the monitoring data gives only
partial information. Decision makers are usually choosing among many possible
actions, but the monitoring data apply directly only to some of these: e.g.,
“do nothing,” “impose a penalty,” and “shut it down.” (Even this assumes that
shutting it down would return the environment to the “Before” condition.) These
data may be indirectly informative about the consequences of other actions, such
as redesign, but usually only when supplemented by other information: theory,
modeling, experiments, and general biological knowledge.

Even if a decision were to be made entirely on the basis of the biological mon-
itoring data, it would be too complicated a function of them to be specified in
advance. With n parameters of concern (e.g., the changes in the mean abun-
dances of n species), the data summary is likely to contain at least 2n values (e.g.,
the confidence bounds, or estimates and P-values, for the n changes). Thus, a
decision procedure would need to divide the 2n-dimensional space of possible
data summaries into subregions corresponding to the different possible actions.
But real decisions will involve far more than the monitoring data, including some
factors which, while knowable (e.g., models of the future of the local economy
from various starting points), would not be worth determining until we know
they are needed, and probably other factors which we cannot anticipate, since
decision makers cannot be expected to specify every possible contingency, and
their corresponding decisions, in advance. Thus the aim of monitoring should not
be decisions but conclusions: succinct descriptions of the biological effects, with
the allowances to be made for uncertainty, in as clear a form as possible.

Hypothesis Tests: Meager Information and
Unnecessary Confusion

Assessment decisions will rarely depend on the existence of an effect. Almost
any intervention big enough to be worth studying will have effects on most of the
local environmental parameters studied, whether we “detect” them or not.
Knowing an effect exists is useless for decision making: it is the direction and
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size that matter. Even this question may be too narrow: some effects might be
positive under some conditions (e.g., in winter, or when currents flow north) and
negative under others (Eberhardt 1976, p. 34, Murdoch et al. 1989, p. 94, Reitzel
et al. 1994). Neyman and Pearson’s conviction/acquittal analogy is false here: the
question is not “is he guilty?” but “what is he guilty of?” and (for decision
makers) “what should be the sentence?”

The null hypothesis of “no change” is a straw man, and “detection” of changes
is irrelevant. “Nonsignificance” or “failure to detect” an effect means merely that
our data or analyses are insufficient to allow us to make an assertion about the
change’s direction, at a significance level of no demonstrated relevance. It does
not mean we have no information: the evidence may point to a large change, but
be highly uncertain when taken in isolation. To report it only as “NS” on the
basis of the 0.05 cutoff is to engage in self-censorship. “Detection” or a P-value
is better but still inadequate; it conveys information about direction, but not about
size.

Thus hypothesis testing provides too little information for most decision
making. At its best (the P-value), it uses an implausible model of “no effect” to
compute the probability of observing data more unfavorable to this model than
ours are. An accept/reject “decision” conveys even less. An estimate is far more
informative, but a test result and even a power curve (or power evaluated at some
arbitrary alternative) adds virtually nothing to it. (That is, nothing directly; from
the estimate and the P-value, one can often compute a measure of the estimate’s
reliability, such as a standard deviation or confidence interval—but this justifica-
tion applies also to handing over the raw data, unanalyzed.)

In addition, test results are misleading or confusing for many people.
Hypothesis testing is awash in jargon, and its logic and the meaning of its results
are not simple. Berger and Sellke (1987) argue that the P-value “gives a very
misleading impression as to the validity of H;, from almost any evidentiary view-
point,” mainly by showing how different it is from any reasonable calculation of
Pr(Hlx), the conditional probability of H(, given the data x. They justify this by
claiming that “Most nonspecialists interpret (the P-value) precisely as
Pr(Hlx)"—an unproven claim, but many statisticians believe it. Perhaps a more
striking justification is that Neyman himself once made this error (Good 1984).

A far more damaging misinterpretation is that a “significant” result (or a small
P-value) indicates a large, important effect, while a “nonsignificant” effect is
nonexistent or unimportant (Yoccoz 1991). This also seems common to “most
nonspecialists”—and to specialists not on their toes. Indeed, it is unclear why a
test of “no effect” would be proposed for decision making in impact assessment
except on the basis of this error.

This confusion can do practical damage. For example, the California Ocean
Plan forbids “significant declines in light transmittance,” and defines “signifi-
cant” to mean “statistically significant at the 95% level.” (This is interpreted to
correspond to a 0.05 level test.) But a large enough monitoring program will
eventually find a “significant” change, and the law seems to attribute no

10
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relevance to the question of its biological significance. A power company or
municipality can best satisfy the law by restricting the monitoring program (e.g.,
on the grounds of expense) so as to ensure a high level of uncertainty and low
power of “detection” (Mapstone, Chapter 5).

When many possible effects are studied, multiple testing adds additional con-
fusion. Mead (1988) presents published examples of results, which biologically
motivated plots would have made beautifully clear, rendered incomprehensible
by multiple testing methods. In assessment, it has been claimed that not only
should estimated changes be statistically significant to be taken seriously, but
also the number of statistically significant changes should itself be statistically
significant (Patton 1991).

These artificial complexities are harmful. Managers, nonscientist review
boards, and some investigators are very likely to misunderstand the meaning of
test results, especially confusing statistical and practical significance. Also, tests
focus attention too strongly on only part of the evidence. No standard formal
method provides a complete assessment of the reliability and practical signifi-
cance of a field result. All are affected by model uncertainty, and the multiple
testing problem is real, even though the methods are usually unhelpful.
Biological understanding is needed to relate the conclusions to each other, to
auxiliary experiments and observations, and to mechanisms and processes which
are known or plausible consequences either of the intervention or of alternative
explanations. Struggling with a variety of tests and their interpretations is not the
best use of biologists’ time and skills.

Confidence Intervals: Quantitative Conclusions

Final reports must present both déscriptions of changes and measures of the
uncertainty of these descriptions. One way to do this is to focus on parameter
estimation, especially confidence intervals:

The greatest ultimate importance, among all types of statistical procedures we now know,
belongs to confidence procedures which, by making interval estimates, attempt to reach as
strong conclusions as are reasonable by pointing out ... whole classes (intervals, regions, etc.)
of possible values, so chosen that there can be high confidence that the ‘true’ value is some-
where among them. Such procedures are clearly quantitative conclusion procedures. They
make clear the essential ‘smudginess’ of experimental knowledge (Tukey 1960).

These descriptions must be easily understood by decision makers who are not
trained in statistics. This is especially important if changes are expected to vary
with seasons or other environmental conditions, so that estimated changes will
have both varying values and varying uncertainties. Confidence intervals satisfy
this too. Complex results can be presented clearly, without oversimplifying, to an
audience of nonscientist decision makers: parameter estimates and confidence
regions not only have obvious relevance to decisions but also are natural
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candidates for graphing. Even “power” is portrayed, in the length of the interval
rather than in a welter of a's, B's, A's and noncentral ¢ and F distributions.

Estimates of direction and size are needed for two reasons. One is obvious:
these are the main determinants of whether an effect is harmful. The other has to
do with the reliability of conclusions. The assessment of a given field result
should consider not only the formal statistical summary of the “internal”
evidence of the data directly pertaining to it, but also the “external” evidence of
the agreement of the conclusion with our understanding of the mechanisms
involved, and with other data or conclusions from the study (e.g., concerning
changes in similar species). This is particularly the case when the conclusion
concerns not only whether a given change has occurred but also whether the
intervention caused it, i.e., whether it is an “effect.” For these external judgments,
the estimated sizes of changes, when combined with measures of these estimates’
reliability, are more useful summaries of the internal evidence than are measures
of how strongly it indicates the changes’ existence (Hill 1965).

A final advantage of presenting confidence intervals and regions rather than
hypothesis tests can only be outlined here. If impact assessment is seen as a sta-
tistical decision problem, it is difficult to avoid Bayesian formulations and solu-
tions, at least as an ideal (Pratt et al. 1965a, 1965b). This ideal may be unattain-
able. It often needs detailed specification and quantification of all aspects of the
problem: “states of nature” (possible impacts—but also, ultimately, economic,
political, and aesthetic parameters), possible actions, the cost or gain function,
and “personal” prior distributions on the states. The last risks having debates
over assessment degenerate into arguments about prior distributions and the qual-
ifications of their proponents. At present, it seems safer to present “objective”
assessments of uncertainty, based on the field observations, separately from
assessments based on compatibility with prior information, other results, and
auxiliary experiments. However, if the Bayesian logic is accepted, then a non-
Bayesian approach adopted for practical reasons should approximate it as well as
possible. In fact, confidence intervals based on approximately Normal point esti-
mates do approximate their Bayesian equivalents (posterior probability or
“credible” intervals), at least for the diffuse priors one would expect when many
poorly known processes are at work, while hypothesis tests do not approximate
theirs (Edwards et al. 1963, Pratt 1965, Lindley 1965, Berger and Sellke 1987,
Casella and Berger 1987).

Discussion

I have argued that confidence intervals are preferable to hypothesis tests of
“no effect” because they directly assess the main concern (effect size), are easy
to understand, display “power” automatically, are more relevant to an overall or
causal assessment, and correspond reasonably well to the Bayesian ideal.

Some counter arguments should be noted. Perhaps the weakest is the
unfounded claim that “the majority” prefers tests. This is a surprising argument
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for scientists to use: the majority once preferred phlogiston, and thought
Copernicus was wrong. It is a poor reason for using a bad procedure, especially
since many users do not understand the tests they use.

Tests may be more familiar to regulators, who frequently test whether a
pollutant is below a threshold. However, this does address effect size: the
threshold is not usually zero but a level judged important. The context is also dif-
ferent. Regulation frequently involves ongoing, routine judgments of many
pollution sources on the basis of a single variable. Assessment requires a one-
time (or few times) judgment of a single project on the basis of many variables.
Even so, with moves toward sale of pollution “credits,” hypothesis tests may give
way to confidence intervals in regulation, too.

There are cases where the law requires hypothesis tests, as for the California
Ocean plan discussed above. The tests must then be done. But these laws are
written with statistical advice, some of it bad: they can and should be changed
with better advice.

Some developers would like decision rules laid out in advance: they don’t
want the rules to change after the investments have been made. But we all want
things we can’t have. Sensible decisions will be complex functions of biological
and economic data and models, and of factors wé can’t predict, and we mislead
clients by promising what we can’t deliver. It may be possible to promise some-
thing weaker: e.g., regulators could make a list of key species and promise that,
provided none of their abundances has decreased by more than 30%, these
species will not be used as the basis for some of the more dramatic possible deci-
sions, such as shutdown or radical redesign. (These species might still be the
basis for milder decisions, and the more dramatic decisions might still arise
because of other factors.) A small part of the decision-making process could then
consist of testing “Hy: Species X has not declined by more than 30%,” at the 50%
level for each species. This has equal risk at the boundary for developers and for
Species X and, assuming abundance estimates have approximately symmetric
distributions, is easy to carry out and understand since no variance estimates are
needed: H) is rejected if, and only if, the estimated decline is >30%. (We would
still, presumably, need to describe the estimation method in advance.) With n
species all reduced by 30%, the chance of no rejections is only 1/2" for indepen-
dent estimates; but it would increase with smaller reductions and more accurate
estimates, and rejection alone would trigger no penalties, only less restricted
decision making.

It can be argued that all this involves no change at all: confidence intervals and
tests are interchangeable, the confidence interval containing all values not reject-
ed by the test; 95% is just as arbitrary as 0.05; and one could also test subsets of
the data, e.g., winter results only, and convert these to confidence intervals. These
arguments are not completely true. The most useful tests may be those for
goodness-of-fit (Box 1980), which are not usually invertible. (Nor is the standard
test for equality of two Binomial probabilities.) A test demonstrating a change in
the mean of a transformed variable, such as \/(Impact site abundance + 0.5) —
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1/(Control site abundance + 0.5), is hard to convert into a confidence interval
for the change at the Impact site: confidence intervals force one to focus on the
more meaningful parameters (Bence et al., Chapter 8). Even when they are math-
ematically equivalent, tests and confidence intervals do not convey equivalent
messages. A P-value for “no effect” cannot be converted into a confidence inter-
val for effect size unless the size estimate is given. Many readers will not make
the conversion, assuming that the P-value summarizes the information, so test
results are misleading if confidence intervals (or something similar) are needed.
The arbitrariness of 95% is a minor matter: other confidences could be indicated
simultaneously on plots. In short, estimates and confidence intervals give the
needed information in a usable form; hypothesis tests do not.
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CHAPTER 7

PROBLEMS IN THE ANALYSIS OF
ENVIRONMENTAL MONITORING DATA

Allan Stewart-Oaten

This chapter discusses problems in the statistical analysis of data which
monitor the environmental effects of planned human alterations. “Alteration”
indicates a long-term (i.e., press) change, like the installation of a power plant,
sewage outfall or oil platform, rather than a short-term (i.e., pulse) change, like
an accident or the temporary effects of building the power plant, etc. “Planned”
indicates that data are available from both before and after the alteration. A
common goal is to compare the value of some biological parameter at the
affected site before the alteration to the value after.

Many biological parameters, such as abundance, average size, age distribu-
tion, various measures of diversity, etc., fluctuate over time. Much of this
fluctuation is currently unpredictable, and must be regarded as random. It must
be allowed for as part of the “error” in formal statistical inference. This requires
sampling at several different times both before and after the alteration. Since
the times cannot be randomly assigned to “treatments” (Before or After), a
monitoring study cannot be analyzed as an experiment. The generic model
“observation = treatment mean + random error” is not automatically justified.
Instead, the models underlying the analyses will be guesses, needing justification
by plausibility and fit to the data, and often including complications like
deterministic functions with unknown parameters (e.g., to deal with seasons) and
heteroscedastic or correlated errors.

The first section discusses a Before-After design, in which samples are taken
at several times before and after the alteration. This design has been used to
assess impacts on temporally varying phenomena in many contexts following
Box and Tiao’s (1975) analysis of the effect of “interventions” (new laws and a
new freeway) on Los Angeles air pollution. In cases where there is no feasible
tomparison site (e.g., global warming), some variant of this design seems the
only possibility. It is introduced here mainly for illustration, since its problems
are not qualitatively different from those of other designs, but stand out more
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clearly. Even to define the parameters describing biological or ecological change
between one period and another requires a model of a stochastic process. For
some variables of interest, e.g., abundance, such models may involve strong
temporal fluctuations. Deterministic fluctuations will lead to bias unless mode]
forms can be guessed approximately correctly. Random fluctuations are likely to
have significant long-term serial correlation of unknown structure, which can
cause estimates of effects to have large variances and these variances to be badly
underestimated from the data.

The second section outlines how the use of a Control site as a covariate may
make acceptable effect estimates, and variance estimates, possible. In this
“BACIPS” (Before-After-Control-Impact Paired Series) design, data are taken
“simultaneously” at one or more Impact sites near the alteration and at one or
more Control areas, nearby and similar but far enough from the alteration to be
little affected by it, on sequences of sampling occasions Before and After the
alteration. This general design has also been called a “multiple time series quasi-
experiment” (Campbell and Stanley 1966), “pseudo-experiment” or
“pseudodesign” (Eberhardt 1976), “Control-Treatment Pairs (CTP)” (Skalski
and McKenzie 1982), and “BACI” (Stewart-Oaten et al. 1986). The idea is that
suitable Controls will “track” the Impact sites in some sense. A change in this
tracking relationship following the alteration will be evidence for an effect.

However, this analysis depends on how the tracking relationship is modeled.
Some alternative models are introduced and briefly discussed. It is argued that
analysis using more than one model may be needed, with necessarily rough ways
of checking the compatibility of their conclusions. Some additional problems of
basing assessment on parameters other than the mean (or median), such as
variances, are discussed.

The third section discusses some approaches to causal assessment.

This chapter is guided by Tukey’s (1962) dictum: “Far better an approximate
answer to the right question, which is often vague, than an exact answer to the
wrong question, which can always be made precise”. Its purpose is not to
disparage formal methods, but to argue that the right questions in impact assess-
ment are likely to have only approximate, messy, and possibly multiple answers,
requiring informal combinations of formal results.

Before-After Studies
Defining Parameters

Suppose we are interested in how the abundance of a given species has
changed following the alteration. Let Np(?) be the abundance at the Impact site
at time ¢ during the period Before the alteration was installed (or began operat-
ing), and N () the abundance at time ¢ during the period After installation. These
are true abundances, assumed known exactly over a Before period T < t < Ty and
an After period T, < Tg, respectively. Sampling error is an additional
complication, but is distracting at this point.
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We might say that “the” abundance has decreased if N(t) is in some sense
smaller than Ng(1). But neither of these is a simple number: both are functions of
;. Nor can these two functions be compared in the usual way, by asking whether
Ng(t) > N (t) for each time, ¢, or by comparing their averages over some period.
There is no time for which both functions exist: Ng(?) exists only for t < T, the
installation time, and N(¢) only for ¢ > T,

We could define the function N(?) to be smaller than Ng(?) if the average of
Na(1) over the After period (Tp < < Tg) is smaller than the average of Ng(t) over
the Before period. One objection to this is that it depends on the periods chosen.
If the After period’s “Winter” fraction is larger than the Before period’s, then we
might have N5(t) < Np(t) by this definition, even though N () may have a greater
“Winter” average and a greater “Summer”’ average than Np(t). Matching seasons
or using a weighted average might solve this problem (Cochran and Rubin 1974).

A second objection is that both Ng(7) and N,(t) are determined partly by
“random” factors such as births, deaths, and movements by individuals, invasions
by predators, competitors or disease, short-term events like storms and
upwellings, etc. It may be that N () < Ng(t) by this definition, only because of
random factors which had nothing to do with the alteration. This suggests that
judgment should be based on some kind of average or distribution of what could
have happened, rather than directly on what did happen.

This conclusion especially applies if the consequences of the decision to be
made will depend on future abundances, rather than past ones, as in decisions
about ceasing operations, modifying designs, or compensatory mitigation. In
these cases, the abundances up to the time of the decision are useful mainly as
guides to future abundances —i.e., to their probability distributions. Even deci-
sions concerning punishment or reparations for damage already done require a
comparison between what has happened following the alteration, i.e., N(t) for
Ty <t < Tg, and what would have happened had the alteration not occurred, i.e.,
the distribution of possibilities for Ng(t) for the same period.

Time-Series Modeling

To define distributions of what the abundances could have been, or could be
in future, we need to regard Ng(t) and N(t) as stochastic processes. Such
processes can be modeled by giving a formula from which, given past values of
a function and also the values of a collection of random variables generated inde-
pendently in a specified way, all future values of the function could be
determined. For example, the abundance of an annual population in a constant
environment might be described by N(t) = rN(t — 1)/(1 + cN(t — 1)), where the
r’s are independent draws from some specified distribution. Given N(0) and the
set of random values ry, r, ..., the entire process could be calculated.

Given the past values of a process, we can simulate a possible future on a
computer, by using a random number generator and applying the formula. This
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future will depend in part on the chance values generated (e.g., the r,’s). We could
then simulate another future, using the same past and formula, but a new set of
numbers from the same generator. Each future constitutes a “realization” of the
process: each is a function of time. For any time, ¢, in the future, and any num-
ber x, we can determine the probability that a realization generated in this way
will have a value < x at time ¢, i.e., P{N(t) < x}. For instance, we could simulate
a large number of futures and count the fraction with this property. These prob-
abilities give the distribution of the process at time ¢. Similarly, for any two times,
t; and #,, we can determine P{N(t|) < x; and N(t;) < x,} for any x; and x,, and
thus the joint distribution for these two times. From these distributions, means,
variances and covariances can be obtained, all functions of time (or of two
times). Similar probabilities can be computed for any finite set of future times;
the collection of all such probabilities gives the distribution of the entire process.

Thus we wish to compare the distributions of the Before and After processes,
Ng and N, generated by possibly different formulae and random number
generators, using a single partial realization of each, Ng(t) (Tg <t < T,) and
Na(t) (To<t <Tg).

Focus on the distribution circumvents the problem that the realizations, Ng(t)
and N(t), are never observed at the same time, r. Even though the alteration
prevents any actual realizations from occurring, there is a distribution of possible
realizations of Ng(t) for t > T|;, because the distribution depends only on the past,
the appropriate formula, and the distributions of the random variables. Thus the
distributions, or key parameters like means and variances, could be compared at
any time t, even though realizations cannot be. The effect of the alteration (or the
change coincident with the alteration) could be defined as the difference between
the means of N(?) and Ng(1). If no other causes are operating, this is the differ-
ence between the mean abundance obtained with the alteration and the mean that
would have been obtained had the alteration not occurred.

Estimating a Varying Mean

Unfortunately, the distributions, or their parameters, are still functions of time.
For example, given a “history” of past values, H, at time t; say, the mean of Ng(t)
at time ¢ is

MB(I,H,to)=E{NB(t)|H,t0}, (1)

the mean of the values at time ¢ of all possible realizations beginning from a
history H at time #,. This is not an average over time: ¢, H and ¢, are all fixed.
We are averaging over the possible values of Ng(?), each possible value corre-
sponding to a set of possible values of the random variables involved in the
algorithm (e.g., ry, ry, ..., in the example above). Similarly we have M (1,H.ty),
the variance functions Vg(t,H,ty) and Vs(1,H ,ty), and the covariance functions
Cg(ty,ty,H ty) = Cov{Ng(t,).,Ng(ty) | H,ty} and C(t.t;,H ty). These functions are
not known because the algorithms (the formulae and the distributions of the
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random variables) for generating realizations are not known. They must be partly
suessed, guided by biological knowledge and intuition, tractability and flexibil-
;y, and partly estimated from the data (i.e., from the observed realizations).

Some judgment is unavoidable. To make any inferences at all, or even to
produce meaningful descriptive summaries of the data, some assumptions are
necessary so that observations taken at different times can be combined to
estimate parameters relevant to all times.

Modeling the Mean Function. One possibility is to model the mean
functions, Mg and M4, as explicit functions of time, which are known except for
a small number of time-independent parameters, to be estimated from the data
and other information. If time is measured in years, we might assume

Myg(t,H ty) = ug + ogsin 27t + Bgcos 27t + h(1,H 1), (2)

where & — 0 as ¢ — £ increases (the effects of past history die away). Assuming
the process began far in the past, Mg oscillates sinusoidally (seasonally) about a
fixed value. The effect of the alteration could be defined in terms of pg, otg, and
Bg and the corresponding After parameters, with all six estimated from the data.
An immediate problem is that this functional form may be wrong. The mean
of the process may not be smoothly sinusoidal. Our estimates of the alteration’s
effects will then be biased. Alternative forms are available, e.g., replacing
agsin 2mt + Pgcos 2ms by a polynomial or by separate fixed means for each
“season” (defined by the biology, not the calendar), but these may be wrong too.
However, the greater problems are likely to be estimators with very high
variances, and underestimation of these variances. These arise because of large,
long-lasting fluctuations that are not allowed for in the mean functions, so must
be treated as random deviations from them. These fluctuations can be caused by
major environmental events, like El Nifio or a large storm, or by biological events
unrelated to the alteration, like an epidemic or a predator—prey cycle. Such a fluc-
tuation may last through a significant part of the sampling program; if it does,
then the observed abundances, N(t;), will be “serially correlated” (the series is
“autocorrelated”): several of them, especially those close in time, will have
essentially the same random deviation from the mean, so (i) this deviation does
not “cancel out” in the average, and (ii) these observations will not vary much,
50 the true variance will be underestimated. Thus, effect estimates may be very
unreliable (containing a large chance component), but may seem to be reliable.
One way to deal with this problem is to try to model major periodic phenom-
ena deterministically as part of the mean function. Calling something “random”
rather than “deterministic” is often rather arbitrary, based on what we are unable
to predict in our present state of knowledge more than on what is inherently
unpredictable. However, unless the phenomenon is well understood, this seems
likely to complicate interpretation without reducing variance, by introducing
additional parameters which explain little of the variation but whose estimates
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are correlated with the estimates of interest, i.e., of the alteration’s effects, such
as i — Mp in Equation 2.

Modeling the Errors. An alternative is to write a model for the
abundances, e.g.,

N(fi)=M(ti)+€i, (3)

where M is the parametric mean function, and the errors, €;, may be correlated.
The past history, H, being unknown, can be taken as being far in the past: it is
usually plausible that, if H is information about N(t) for t < #;, then H will be
irrelevant if 7, is long enough before the first observed time, #,. The errors could
be modeled in a way that takes specific account of their likely mechanisms, but
this is hard to do when there are several sources of error whose mechanisms are
little known. Generic models, especially linear models (ARMA models, Box and
Jenkins 1976) of the form
g =2bg;;+a;+2ca;p 4)

where the g;’s are uncorrelated random values and the b’s and ¢’s are unknown
constants, are usually preferred. This class of models can allow for trends or sea-
sonal patterns (so that “ogsin 2nz + Bgcos 27¢” can be omitted from Equation 2),
by focusing on differences of successive observations, or observations a year
apart, and allowing the current error to depend directly on the error a year earlier.

However, these linear models may not fit long-term phenomena like El Nifio
well: e.g., a recent pattern of declining abundances may indicate the beginning
of an El Nifio, and thus foretell a continuing decline followed by a long period
of low abundance, but other patterns of recent abundances may be uninformative.
Patterns of this kind may be better described by models with long-range depen-
dence, e.g., with correlations that decay slower than exponentially over time
(Beran 1992).

Attributing seasonal patterns tc errors is mainly for series with no clear
physical mechanism for seasonality, and better suited to forecasting than to
estimation. Without differencing, the forecasts have exponentially declining
seasonal patterns. The use of differences implies “homogeneous” behavior, inde-
pendent of the current level of the process: there is no tendency to return to a
mean that is a periodic function of time, like Equation 2—i.e., no “density-
dependent” regulation, so a time series made up of yearly averages would be
“nonstationary”. This seems unlikely for abundances.

Finally, these models imply constant variances and correlations that depend
only on the number of intervening samples; this seems doubtful with unevenly
spaced observations, or if disturbance is greater at some times of the year, but the
analytical consequences may be mild (cf. Stigler 1976).

Using Covariates. The typically small numbers and span of sampling
times in impact assessment data will make it difficult to carry out either the mean

21



Final Study Report — Stewart-Oaten

7. Problems in Analysis 115

function or the ARMA approach. Both introduce new parameters to estimate.
Even if a simple assumed linear form is correct, variances and covariances may
still be underestimated, because the series is so short that the variance of the
average of the errors, i.e., V{2Xe/n}, is not negligible compared to the variance
of a single observation, i.e., V{e;} (see Priestley 1981, Equation 5.3.12). Above
all, even when these problems are minor or resolved, the main achievement of
such models will be realistic estimates of the variances of our estimates of the
alteration’s effects. The models do relatively little to reduce the variances. Even
if the correct error model were given to us, the estimated effects would often still
have variances too large for practical use.

A third approach can potentially both reduce the variances of estimated effects
and estimate these variances accurately. This is to include in the model other
observable variables which are affected by the natural fluctuations but not
affected by the alteration. These “covariates” can be used to estimate the contri-
bution of the natural fluctuations to the abundance. By removing this
contribution, we obtain a “corrected” or “adjusted” abundance which has smaller
temporal variance and smaller serial correlation than the raw abundance but is
equally affected by the alteration. We can estimate what the abundance would
have been under “standard” conditions, and estimate the effect of the alteration
by the change it would cause under these conditions. This approach can also
reduce deterministic bias: e.g., a covariate like water temperature may be a better
indicator of seasonal variation than the time of year itself.

This approach also has difficulties. It requires a model for estimating the
natural fluctuations on the basis of the covariates. Most commonly, some form of
regression of the observed values (the abundances) against the covariates is used,
possibly with either or both being transformed first. If the model form is wrong,
estimated alteration effects are likely to be biased. It also requires that the covari-
ates be reasonably good indicators of the natural fluctuations. The covariate
model will include some additional parameters to be estimated, thus reducing the
information available for estimating effects. If these parameters have little
explanatory value, the variances of our effect estimates may actually increase,
and our estimates of these variances will become more complicated but no more
accurate. This can occur either if the covariate is not strongly correlated with the
natural fluctuation or if it is observed with substantial error.

Before-After-Control-Impact Paired Series Designs

Impact-Control Differences: Model

In many cases, the most effective covariate for the abundance at the Impact
site is likely to be the simultaneous abundance at a Control site. This is not an
€xperimental control, since treatments are not assigned, randomly or otherwise,
by the investigator. In this discussion, a Control is an area which is similar to the
Impact area in features judged to be important (e.g., depth, topography, current
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patterns, suites of species) and near enough to experience similar environmenta]
fluctuations (storms, upwellings, etc.) but far enough away to be unaffected or
little affected by the alteration. The discussion will also apply to a set of Contro]
areas represented by a single value at each time.

We now write Nyg(t), Ncg(t), etc., to indicate the site (I or C) as well as the
period. If several Control sites are used, Ncg(?) can be thought of as the average
or some other suitable summary (e.g., the median) of their abundances. We also
write Mg(t,H ;) for the mean at time ¢ of all possible realizations of N5 given
a history H at a starting point 3. Other means are defined similarly. M g(t,H 1)
is defined for all ¢, including ¢ > T, the time of the alteration, even though Nyp(1)
cannot be observed at these times.

Suppose both the Impact and the Control areas are contained in a larger region
R, all of whose sub-areas experience similar environmental variation, such as
seasons, major storms, climatic disturbances like El Nifio, etc. It might then be
reasonable to assume that the mean (over realizations) abundance per unit area
or volume at any one location (sub-area) differs from the mean for the region
only because of (i) particular features of the location itself, which are constant,
and (ii) lingering effects of past abundances, expected to shrink rapidly as a result
of births, deaths, and movements. One model for this is

MLP(t'H'tO):'MRP(t) + aLP+th(t,H,t0) (5)

for the mean of the abundance process at location L (Impact or Control) in period
P (Before or After). Here, Mpp(t) is the mean abundance for the region as a
whole, and the other terms are the two types of deviation.

Random environmental variation would cause the actual abundances to differ
from their means. If E; p(t) represents this deviation at location L, then the devi-
ation for the region, Egp(t), is the average of E;p(t) over locations, L, in the
region, and we can write M, p(t) = E; p(t) — Epp(t) for the difference between the
deviation at L and the average deviation. The model then describes the abundance
at L during period P by

NLP(f)=MRP([)+ERP(f)+aLP+T]LP(t), (6)

where Mgp(t), and o p are deterministic, and Egp(?) and M p(t) are stochastic
processes with mean O for each ¢ (since they describe deviation from the mean).
As for the “Before-After” model (Equation 3), the history, H, is taken to be far
in the past and irrelevant.

Impact-Control Differences: Estimating the Effect

If Equation 6 is accepted, then the difference between the Impact and Control
abundances, Dp(t) + Nip(t) — Ncp(1) is

Dp(t)=aIP—acp+Ep(t) (7)
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where €p(t) = Nip(t) — Ncp(1). Given observations Nyp(t) and Ncp(?) at times fp,
. tpn(p) in period P, a natural unbiased estimate of oyp — Ocp is Dp., the average

of the Dp(tp;)’s.
Assuming Equation 6 holds for both periods, we can regard

8 = (044 ~ Oca) — (o4 — Ocp) ®)

as the change in the mean at the Impact area relative to that at the Control area,
between the Before and After periods. If we can assume that this change would
have been zero without the alteration, i.e., that the mean of Ny5(1) — Nc(t) would
have continued to be (0yg — Ocp), then (05 — Ocp) — (O — Ocp) gives the
change in mean at the Impact area due to the alteration. Thus D, — Dg. is an
unbiased estimate of the effect of the alteration on mean abundance at the Impact
site—if the model is correct and the alteration caused the change.

The Variance of the Effect Estimate. Under Equation 6, the use of the
Control as a covariate has allowed us to define a parameter representing the effect
without further assumptions about Mpgp(t), the temporally fluctuating component
of the mean Impact site abundance. Equation 6 also implies that the difference,
Nyp(t) = Ncp(t), removes the “regional” random term, Egp(t), as well as Mpp(t),
thus potentially removing much of the variance and much of the serial correla-
tion which the Before-After design must contend with.

To describe this, we write Vgp(t) and Cgp(t}, ) for the variance and covari-
ance functions of the error, €p(1), and Cga(t;, t;) for Cov(eg(t)), €a(t)), the
covariance between a Before and an After difference. From Equation 7, the vari-
ance of Dp. — Dg. is:

V{DA. = DB‘} = ZPV&-}:./N(P) i Zp[l = l/n(P)]Cep. = 2CBA" (9)

where n(P) is the number of observations in period P, Vepe = zng)( tpj)/n( P) and

Cep = 25,%; 4 Cepl(tpj, tpy)in(P)[n(P) — 1], the averages of the variances and

covariances of the differences in period P, and Cgp. = L Z;Cpaltp): tag)

In(B)n(A), the average covariance between a Before and an After difference.
The standard estimate of V{D,. — Dg.} is

52= ZPZJ(DP(tPj)—DP.)zln(P)[ﬂ(P)— l] (10)
assuming possibly unequal Before and After variances. It is biased low by
b(s?) =V{Dp. - Dg.} — E{s2} =ZpCep. — 2Cpa-. (11)

This result holds even if the variance function, Vsp(t), varies over time (see also
Stigler 1976, Cressie and Whitford 1986).

s Thus, Equation 9 gives the variance of the effect estimate, and Equation 11
gives the amount by which this variance will be underestimated (on average) if
serial correlation is ignored. Previously it was argued that both will often be
Unacceptably large when the Before-After design is used. This may not be so
When the differences are used.
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Large fluctuations will often be the result of large-scale disturbances affecting
the whole region, so that most of the variance at a site will be due to the
“common” regional variation, Exp(t) in Equation 6, which is removed when we
take differences. If the Control and Impact sites are not far apart, n;p(t) and
Ncp(t), the local deviations from the average regional fluctuation, may be highly
correlated, further reducing Vgp(1) = V{nyp(1) — Ncp(t)}. These local deviations
should be more quickly removed than regional deviations, not only because they
are smaller but also because of mixing (of nutrients or planktonic stages) and
movement within the region: e.g., a chance increase at a site, unrelated to
changes in long-term physical or chemical conditions at the site, should be
quickly dissipated to neighboring sites. If so, serial correlation of the differences,
Dp(t), will decrease rapidly with time.

Reducing Variance and Bias. Smaller variances and correlations will
reduce V = V{Dp* — Dg*}. The latter will also reduce the bias, b = b(s2) in
Equation 11, both absolutely and relative to the variance. Widely spaced
sampling times will reduce b, but also reduce the number of observations, thus
increasing V, unless the sampling period is lengthened.

Sampling error will increase Vep(1), the variance of the errors, but would not
usually affect the covariances. Thus, reducing the sampling error will reduce V,
but not b. A confidence interval for & (Equation 8) should have length about 20V
(where ¢ is from the ¢ distribution). The standard interval, using s2, has length
about 20\[V — b], so is too short by about 2tb/{\V + N[V — b]}. Both the absolute
and relative error increase if V decreases but covariances do not.

If the underestimate of variance seems likely to be serious, the autocorrelation
of the errors can be allowed for, e.g., by writing an explicit model. If variances
within periods are equal, differences at f; and ¢;,,, in the same period have
correlation p™, and differences in different periods are uncorrelated, then
b(s%) = 2pV/(1 — p). Thus multiplying s2 by 1 + 2r/(1 — r), where r is the first
order serial correlation (estimating p), may approximate the right adjustment,
though only roughly.

Alternative Models

The model of Equation 6 assumes that spatial and temporal variation are
additive: i.e., systematic and random large-scale fluctuations, like seasons and
storms, are assumed to affect all sites in the region approximately equally, so that
they largely cancel in the differences, N|(t) — Nc(t). We now consider some alter-
natives. For applications of some of these, see Bence et al. (Chapter 8).

Additivity after Transformation. Spatial and temporal variation may

not be additive on the abundance: e.g., they could be additive on the log of the
abundance (i.e., multiplicative on the abundance) so Equations 6 and 7 hold for
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log[Nyp(t] H,1y)), or additivity may apply to the reciprocal (the area or volume
needed to support one individual) or to some other transformation.

One way to approach this problem is to seek the right transformation, e.g.,
using a power transformation with power chosen by the Tukey test (Tukey 1949,
Snedecor and Cochran 1980, p. 283) or a similar method (e.g., Andrews 1971,
Berry 1987). While useful, this approach is not trouble free (Smith et al. 1991,
1993). Some transformations require rather arbitrary adjustments when the
observed abundance is zero (e.g., due to sampling error). The change in the
difference of the means of the transformed variables may not be easy to interpret
in terms of the original abundances. There may not be a “right” transformation,
e.g., if abundances at Impact are higher than at Control under some conditions or
seasons, but lower under others. Even if there is a “right” transformation for the
Before period, it may not be right for the After period if the alteration does not
act in the same way as other effects.

Ratio Models. Suppose the Impact and Control sites are sub-areas of a
larger region subject to mixing and experiencing similar environmental variation,
both systematic and random. The total population of the region, Ng(t), fluctuates
in response to this variation, and also to local variation at the sub-areas, but is
then redistributed by movement, births and deaths. The abundance in a sub-area
might then tend to be a roughly fixed proportion of the abundance of the region,
the proportion being determined by such factors as water movement (bringing in
recruits), usable space, and local survivorship.

If, given Np(t), Impact and Control abundances are given by independent
Poisson variables, Ny(t) and N(t), with means oyNg(t) and 0cNg(t), then
standard tests and confidence intervals for the ratio, rjc = o/0c, are derived from
those for the parameter p; = 04/(0 + 0c), the probability of “success” in the
Binomial distribution for Ny(t) successes, from Ng(t) + Ny(t) trials (Lehmann
1959, p. 180). If, given the values of the sequence {Ng(1;)}, the pairs
{(N¢(1;), Ny(1;))} are independent (over time), then the combined estimate of py is
Pr=1U[1 + IN(t;)/ENy(1,)). If the totals, ZN(1;) and INy(t;), are not small, then
Fic= py/(1 — py) = INy(1;)/EN(t;) is approximately Normal with mean ryc and
variance ryc/Z[N¢(t;) + Ni(t;)]. We might measure the change at Impact relative
to Control by the difference between the Before and After ric’s, substituting
Fic for ric in the variance formulae for a confidence interval. Eberhart (1976)
Suggests a similar approach.

Three uncertain assumptions in this model are (i) that oy/0, is the same at
each time, (ii) that Nc(1) and Ny(t) are Poisson, and (iii) that the {(N¢(t;), Ni(1;)}
pairs are independent given the Ng(7)’s. These have the unlikely corollary that,
given the sample size, X[N¢(t;) + N((t;)], the number of sampling times is irrele-
vant: a single Before time and a single After time would suffice. More realistic
approaches include: (i) treating p; = py(t) as variable in time, e.g., as a stochastic
Process with mean py; (ii) assuming the mean of N, (t) (L = C or I) to be 6, which
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is itself gamma distributed with mean o; Ng(t), so that N(t) and Ny(t) have
negative binomial distributions (this leads to a special case of (i), with pilt)
having a Beta distribution, if the two gamma distributions have the same scale
parameter); (iii) treating the values py(1;) = Ny(t;)/[Nc(t;) + Ny(t;)] as a possibly
correlated series, with variances, V{p(;)}, not necessarily proportional to
ll[NC(ti) 2 7 Nl(li)].

A Predictive Model. Perhaps the most common covariate model is
Ni(t;) =y + BNc(t;) + €;, (12)

where the error, €, is uncorrelated with Ng(;). With this model, we could
estimate an alteration effect as a change in y or in B between Before and After.
But it seems preferable to estimate or describe the change (i) by presenting both
regression lines, thus showing that the effect varies with “environmental condi-
tions”, as represented by N(t) (e.g., Mathur et al., 1980; Bence et al., Chapter
8), and (ii) presenting as the overall estimate the change in Y + BN, where N is
a “typical” Control value, possibly the average of all observed N(?) values, both
Before and After. The hope is that most of the variation in Ny(t) is “explained by”
variation in N¢(t). Large, low-frequency variation, like El Nifio, which can be
difficult to model but affects both N and N}, might then not play a significant
role, so that the €;’s can be treated as independent or as obeying a simple generic
model, e.g., autoregressive of order 1 (g; = bg;; + a;, where b < 1: see
Equation 4).

This model seems a potentially useful combination of the ideas of additive
and multiplicative differences between the Impact and Control sites, but an
attempt to derive it from a rough mechanistic model shows that nuisance varia-
tion may not be completely removed this way. Suppose Ng(?), the regional
average abundance at time ¢, has mean () and variance 62(z); that Ng(t), N(t)
and Ny(t) are jointly Normal; and that, given Ng(t), Nc(t) and Ny(t) have means
0cNg(t) and ayNg(t), variances ¢cc and @y, and covariance ¢cy. Then the uncon-
ditional distribution of Ny(¢) and N(t) is Normal with means oyfi(2) and ocpu(t),
variances Ty = ¢yy + 0762(1) and Tcc = P + 0t 26%(1), and covariance Ty = ¢
+ (xcalo'z(t). Standard manipulations show that, given N(t), the distribution of
Ny(t) is Normal with mean E{N(t) | No(t)} = (o — boc)u(t) + bN¢(t) and
variance V = Ty — tgl/“ccc, where b = Te/Tcc.

Thus neither p(¢) nor 6%(t), the “regional” mean and variance, drop out in this
version: both the slope and the intercept in Equation 12 are functions of time.
This is a form of the “errors in variables” problem (Fuller 1987, Snedecor and
Cochran 1980, p. 171): Equation 12 holds with “o-Ng(t;)” instead of “N(t;)”;
the latter is an estimate, with error, of the former; when it is substituted, its error
becomes part of the “g;”, which is thus correlated with the “independent”
variable, N¢(t;).

Thus, the “predictive” model of Equation 12 does not follow from this
argument. It may not follow from any simple mechanistic argument, though more
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careful attention to mechanisms and distribution choices may do better. This does
not mean it should not be used: statistical analyses are frequently based on
generic models chosen more because they are simple, well understood, and have
about the right behavior, than because of a mechanistic derivation. If 62 is large
compared to the ¢s, or if it does not vary much over time, and if p(t) can be
modeled as a seasonal function, then the modified Equation 12,

Ni(t;) =Y+ oysin 2nz + ocos 21t + BN(t;) + €, (13)

might be satisfactory. This model would allow the relative advantages of the
sites, or the effect of the alteration, to vary with seasons.

Matching. In some cases, matching could be used to remove deterministic
time effects, including cases where the alteration itself has different effects under
different conditions. For example, data could be analyzed separately for winter
and summer or for periods of upcoast and downcoast currents (Reitzel et al.
1994).

Model Uncertainty

The previous section suggests that there may be many plausible models on
which assessment could be based. It may be possible to rule some of these out
by goodness-of-fit tests, diagnostic plots, or arguments based on mechanisms or
auxiliary variables. These methods are informal (e.g., there is no clear criterion
for choosing the level of a goodness-of-fit test), but honest use would usually
retain several models for assessment. Thus model uncertainty is a part of the
uncertainty in estimates of change.

It is likely that none of the models remaining is “correct”. A strategy is to
begin with a broad enough range of realistic models to have a high likelihood that
at least one of them is close enough to the truth for effective decision making.
Impact assessment could benefit from a “’kit” of generic stochastic spatio-tempo-
ral models which can allow for major systematic and random effects and reflect
the physiology and behavior of groups of organisms, but allow comparison of
neighboring sites over time without an excess of unknown parameters. A possi-
ble starting set might consist of the three types of models—additive (perhaps
after transformation), ratio, and predictive—discussed in the previous section.

If all the uneliminated models give similar answers, model uncertainty could
be displayed by giving the results from the simplest or most plausible model,
yvith bounds showing the range of variation due to model differences. But “sim-
ilar answers” may not be easy to define: e.g., models assuming multiplicative
.effects must give different answers from models assuming additive effects. This
1S a case where estimates and confidence intervals for effect sizes are messier
than P-values for a test of “no effect” (see Stewart-Oaten, Chapter 2)—although
the tidiness of the latter is misleading, since tests using different models are
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testing different things (Sampson and Guttorp 1991). Many of the problems in
this area are discussed by Cochran and Rubin (1974); there are few tidy answers,

Some Suggestions. Models giving E{Ny(t) | N(t)}, like Equations 12 or
13, are the easiest to deal with. For any given N, we can calculate confidence
intervals for Eg{Ny(t) INc} — EA{Ny(t) | N¢}, the difference between the Before
and After mean Impact values when the Control has the value N¢. Thus we could
compute a “typical” loss, e.g., with N = the average of all N(?) values, both
Before and After. Bence et al (Chapter 8) suggest constructing a confidence
interval for the “average” percent loss by a jackknife method, using the values
L; = estimated average percent loss when the ith sampling time is omitted from
the data set. The result compares well with the estimate based on Equations 6
to 8, using N(t) = log(abundance).

It is harder to deal with models which give Before and After estimates of
E{F(Ny(t), Nc(t))}, for some function F: e.g., F(Ny(t), No(t)) = 1/Ny(t) = 1/N(1)
for the “difference” model, Equation 7, with the reciprocal transformation, or
F(Ny(t), No(t)) = Ni(t)/[Nc(t) + Ny(t)] for the ratio model. For these, one approach
might be to choose a “typical” Control value, N ¢ (e.g., the average of Nc(1)
for the entire study), equate F(N, N E) to its Before and After means, and solve to
find Before and After values of V, interpreted as “typical” Before and After
Impact values when Control is at N¢. Thus if Dp, is the average of
F(Ny(t;), Nc(t;)) for period P, and the equation F(N, N&) = Dp, has the solution
N = G(N ¢, Dp.), we could estimate the change in the typical Impact value as
G(N¢, Dg.) = G(N &, DaJ). If G is expanded in Taylor series, with G; = 0G/aD,
we obtain the approximation V{G(N ¢, Dp.)} = V{Dp.}G,2(N¢, Dp.)/2.
This could be used for an approximate confidence interval for the change. E.g.,
if F(Ny, Nc) = 1/Ny = 1/Ng, so DP. the average of 1/Ny(1;) — 1/Nc(t;) in
period P, then G(NC Dp.) = - [I/NG + DP.] L= Npp, say, so an approximate
confidence interval is NIB - NIA + t\/ NIB /n(B) + sANIA /n(A)} where ¢
is from the ¢ distribution and n(P) and s 2 pare the number of observations and the
sample variance of 1/N(t;) — 1/N¢(t;), in period P.

A similar approach is to use the estimate of & = the change in the mean
of F(Ny(t;), Nc(t;)) (i.e., the Before mean minus the After mean, as in Equation 8)
directly. If D = Dg, — D,. is the estimate of 3, we construct a “no alteration”
sample consxstmg of the Before values of NI(fB;) and the estimated After
values Ni(1,;) which solve F(NI(tA,) Nc(tp;) = F( Ny(tp;), Nc(ty;)) + D. Thus,

I(tA,) estimates the value we would have got at time f,; had the alteration
not occurred. We also construct an “alteration” sample consisting of the
After values N(ry;) and the estimated Before values N ((tg;) which solve
F(NI(tB,) Nc(tg;)) = F(Ny(tg;), Nc(tg;)) — D. Thus, N {(g;) estimates the value
we would have got at time tg; had the alteration existed then. We then estimate
the “typical” effect by the difference between the averages of these samples. A
more elaborate scheme would be to use the upper and lower boundaries of the
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confidence interval for 8, instead of using D. Thus if the confidence interval for
the change in E{1/Ny(t) — 1/N¢(1)} is (Dy, Dyy), then the upper boundary for an
approximate confidence interval for the change in Ny is found by (i) construct
the “no alteration” sample Ny(tgy), ..., Ni(tgyp)) Ni(ta1)s - sNi(tan(a))» Where
N ((tar) = [UNi(tag) + D; !, and calculate its mean, My na; (ii) construct
the “alteration” sample, Ny(tgy), ..., Ni(tgus))s Ni(ta1)s - » Niltanca)) Where
NAI(’Bk) = [1/Ny(tgy) — D)}, and calculate its mean, My A- The approximate
upper confidence limit is My o — My a. (D is used for the upper limit because
F(Nj, Nc) = 1INy = 1/N( is a decreasing function of Ny. If the alteration reduces
abundance, Dy and Dy, should be negative.)

Approximate Answers to the Right Questions. Such comparisons are
very rough. Presenting confidence intervals from several different models is an
attempt to combine the ranges of their effect estimates and their error (standard
deviation) estimates. The approach ignores both the “errors in variables” prob-
lem and that means are not preserved by nonlinear transformations, e.g.,
E{1/Ny(1)} # V/E{N((t)}. The last problem may not be severe for differences,
since the errors may approximately cancel. A Taylor series approach to it is
described by Sampson and Guttorp (1991), but seems hard to apply here: the
pairs {(Ny(t;), Nc(t;))} are assumed to be independent (for different times).
Medians are preserved, so it might be possible to improve model comparisons by
using confidence intervals for medians (e.g., based on the sign test) rather than
for means.

But these, or similar, compariscens could be useful. Although the models may
have very different forms, e.g., additive versus multiplicative, they may give sim-
ilar results, especially if the Before and After series of Control values are similar.
When the series are dissimilar, we need to distinguish a change at one site that
does not occur at the other from a change in a comparison measure (the differ-
ence or the ratio) that is due solely to a natural change over the entire region.
Even when a single model seems clearly “best”, we may want to present the
results in a different measure or “scale”: e.g., the ratio model may be the most
plausible, and fit the data best, but a decision maker might want to know “about
how many individuals” of a given species will be “lost”, i.e., the arithmetic dif-
ference between N; and what it would have been. When several dissimilar models
remain in the running, P-values for a test of “no effect” might be useful, not as a
measure of the strength of the effect but to help indicate the compatibility of the
models. In some cases it may be necessary to report more than one set of results,
with arguments for preferring some models to others.

There are ways to avoid (or evade) model uncertainty. One is to choose a stan-
dard model (e.g., Equation 7 with independent errors, €p(t)), or a standard
analysis (e.g., a t-test or ANOVA), and report the results of this alone. By
Implying that the model used (often an implausibly simple one) is known with
Certainty to be true, this approach seems misleading. It is sometimes supported
by subjecting the model to a goodness-of-fit test, but other plausible models
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might also pass this test while giving different assessment results, especially if
data are sparse.

Estimating Other Parameters

Underwood (1991, Chapter 9) has suggested that effects on other parameters,
notably the variance, should also be assessed. This is attractive, but estimating the
variance functions, Vg(t,H,ty) and V,(t,H,ty), or the covariance functions,
Cg(t,ty.H ty) and C,(t),t5,H 1), would be harder than estimating the means. If
we observe N(t) at times ¢y, t,, ..., I,, the mean (over all possible realizations) of
the usual estimate of variance,

¢ = Z[N(1;) = N.J2/(n - 1), (14)
is

¢ = Z[M(ti,H,to) - M(.,H,to)]z/(fl - D+ V(. ,H,to) = 2ZJZJ<,(C (tj,tk,H,tO)/n(n -1,
(15)

where M(.,H ty) = ZM(tj,H,to)/n and V(. H,y) = ZV(tj,H,to)/n. If we knew how to
adjust to eliminate the two sums in Equation 15, most of the difficulty in infer-
ence concerning the mean function would be removed. But inference concerning
the variance function would still face all the problems discussed so far.

Inference (estimation and uncertainty measurement) concerning mean func-
tions is difficult because their functional form is unknown, and temporal variation
and serial correlation cause (i) effect estimates to have large variances and (ii)
these variances to be hard to estimate. Inference concerning variance functions
has all three difficulties in more severe form. The estimate of the variance func-
tion can also be biased by variation in the mean function, and the variance of this
estimate is affected by higher temporal moments, e.g., by the kurtosis at time ¢, or
E{N(t;)N(ty)N(t3)N(t4)} for four distinct times.

The standard “fixes” of deterministic modeling, time-series modeling and the
use of covariates are all harder to achieve. Deterministic modeling requires intu-
ition or knowledge about the behavior of these functions. Variances seem as likely
to vary over time as means; e.g., V(t,H,t;) seems likely to be higher if 7 is in a
period with high levels of disturbance (more storms, upwellings, or migrations),
and the part due to sampling error may depend on population size. Covariances,
C(t,t5,H.ty), would be expected to be higher if ¢; and t, are close, but lower if the
period between t; and ¢, is one of high disturbance. It seems harder to base plau-
sible deterministic models for variances and covariances on these mechanisms
than it is for means. Deterministic models for higher moments seem even more
remote. Cox (1981) briefly discusses approaches to monotone and cyclical varia-
tion in variances.

If V(t,H,ty) varies in time, we never observe an estimate of it. In contrast, the
observed N(t) is itself an unbiased estimate of M(t,H,ty), so plotting the path
traced out by the observations can give us some indication of functional form. If
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M(1.H.1p) is known or accurately estimated (i.e., if the problem for means is
largely solved!), plots of squared residuals, and of products of residuals, give
similar, but weaker, guidance for variances or covariances. A plot could be made
by calculating sy, in Equation 14, for restricted values of i, e.g., sNzl uses only
N(t1)s - N(t)s sN22 uses only N(1), ..., N(t,,), etc.; or nonoverlapping blocks,
e.g., the first k& times, the next &, etc., could be used if the series is not short.
But these would be guides to V(1,H,t) only if the two sums in Equation 15 were
missing.

It is possible that some of the methods for dealing with ARMA models hav-
ing missing values would be useful, but the difficulties seem much greater than
for estimating means. More directly, generic, ARMA-like error models designed
to cope with varying temporal variances and covariances has been a busy
research area in financial time-series analysis since Engle (1982): see Engle and
Rothschild (1992) and Bollerslev et al. (1992). These ARCH (AutoRegressive
Conditional Heteroskedasticity) and GARCH (Generalized ARCH) models are,
like ARMA models, mainly concerned with forecasting and with conditional
behavior, rather than parameter estimation: e.g., the variance of future observa-
tions is usually assumed to vary in response to past values, although systematic
influences like seasons or day-of-the-week can be included. They also seem to
need large, high frequency data sets for effective analysis.

Covariate adjustment, including the use of a Control site, also seems difficult.
For example, we can use regression of N(t) against a covariate, X(7), to estimate
the conditional mean of N(t) for a given value of X(?), i.e., E{N(t)|X(t) = x}, for
any x. This is because the observed N(t¢) is itself an unbiased estimate of
E{N(t) 1 X(t)}. But we do not observe an unbiased estimate of the conditional
variance, i.e., of V{N(t)1X(t)}. (This is variance among realizations so it cannot
be estimated from repeated estimates of N(t) at one time: these vary only because
of sampling error.) Thus the covariate adjustment may require strong assump-
tions to (i) determine the form of the relationship between the variances at the
two sites (there seems no reason to expect it to be simpler than the relationship
between the means), and (ii) estimate the parameters of this relationship.

Finally, a variance change seems hard to interpret. A decrease in the mean
would indicate that conditions have deteriorated for the species. The amount of
the decrease is also significant for decision making. Although individual assess-
ments would differ, there are reasonable bases for a decision maker to compare a
;30% loss of species A to a 60% loss of Species B, and perhaps even to a 5%
Increase in local unemployment. But it is not clear what a change in “the average
variance” (or some parameter of a deterministic variance function) would signify,
let alone how one would weigh a 30% increase in it against an economic effect.

Causal Uncertainty

Both statistical uncertainty (as measured in confidence intervals) and model
uncertainty apply initially to estimates of change. There is additional uncertainty

32



Using Before-After-Control-Impact in Environmental Assessment

126 A. Stewart-Oaten

as to whether the alteration caused the change (i.e., whether the change is an
“effect”), since assignment of sampling times and sites to “unaffected” or “poten-

tially affected” is not under the investigator’s control, and in particular is not

random.

Experiments with randomized assignments seem clearly the best way to estab-
lish causes as opposed to associations (Barnard 1982), but these were invented
relatively recently. (Fisher 1925). Much accepted scientific “truth” is still
probably based on nonrandomized studies. Problems of causality in observa-
tional and quasi-experimental studies have attracted increased attention from
statisticians recently (e.g., Cochran 1972, Rubin 1974, Pratt and Schlaifer 1984,
Rosenbaum 1984, Cox 1992).

Hill (1965, see also 1971, Chapter 24) lists characteristics favoring causal
interpretation of results from observational studies: (i) strength of effect, (ii)
consistency (among studies), (iii) specificity, (iv) temporality (does the cause pre-
cede the effect), (v) biological gradient (monotone dose-response curve), (vi)
plausibility, (vii) coherence, (viii) experimental or “semi-experimental”
evidence, and (ix) analogy (with similar causes which led to similar effects). In
impact assessment, (iv) seems covered by the Before data.

Hill (1965) stresses (i), which seems to favor confidence intervals over
hypothesis tests. The larger the effect, the less likely it is to be the result of some
overlooked factor. He points out that the measure of “strength™ does not need to
be the same as the measure of “importance”: e.g., in medical studies, the relative
difference between groups in death rates from a specific illness may be
convincing, even though the absolute rates are both small. Thus an impact
analysis in terms of the ratio model can help suggest cause, even though impor-
tance may be judged by an estimate of absolute change.

Schroeter et al. (1993) stress (iii), (v), (vi) and (vii): “In the absence of a
demonstrated causal chain, a convincing case requires that the results for a
number of different species tie together and be consistent, that plausible mecha-
nisms for an ecological impact be identified, and that reasonable alternative
mechanisms be explored and ruled out.” In their study of kelp bed invertebrates
affected by the plume of a power plant cooling system, they (vii) demonstrate
similar declines for similar species of snails, at two Impact sites, with (v) the site
nearer the plant showing greater effects; (vi) suggest two plausible mechanisms
(reduced supplies of drift kelp, and increased abrasion due to the flux of fine
particles); and (iii) reject several alternative explanations (e.g., by carrying out
separate analyses omitting samples possibly affected by an urchin feeding front).
Another version of (iii) might be that species which should not be affected should
not change. Also, a time trend in the estimated change might indicate the tempo-
rary effects of installation, as opposed to the long-term effects of existence or
operation.

A version of (ii) may be comparison of results with other assessment studies
of similar types. Note, however, that impact studies are usually concerned with
effects at a particular place and time, not with generalizations: they are analogous
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10 asking not whether smoking causes cancer but whether it caused a particular
smoker’s cancer. Other impact studies are perhaps better seen as a version of (ix),
o.0., assessments in temperate coastal waters of different continents may involve
different species but similar feeding and motility groups, etc. These other studies
would be subsidiary in an assessment of a particular alteration, rather than
--cquivalem” as in studies aimed at generalizations.

Item (viii) is what the BACIPS design is intended to achieve (see Campbell
and Stanley 1966). It seems to lie between an experiment and an observational
study. In each case, we compare a “treated” and an “untreated” population on the
basis of a sample, but causal inferences from observational studies are less
reliable for two reasons. First, the allowance for error in inferences from sample
to population are more likely to be wrong, since they depend on detailed models,
rather than on randomized assignment and a treatment-unit additivity assumption
(i.e., that a treatment has about the same effect on each unit). Second, the
populations may be different not because of the treatment but because of other
factors which are correlated with the treatment assignment. For example, former
smokers seem to be less healthy than current smokers (Freedman et al. 1991, p.
23), but the “outcome” variable, health, may be a cause, rather than a result, of
the assignment (the decision to give up smoking).

An Impact-Control comparison using only After data risks both problems. The
error problem arises because the analysis requires a time series model; the
assignment problem arises because features which cause a site to be chosen for
an alteration may be important in determining abundances, e.g., a well-inten-
tioned developer might choose a site where abundances are already low.

A Before-After study risks mainly the error problem. A factor affecting abun-
dance may vary more between periods than within periods, and thus mask or
mimic an effect of the alteration. The assignment problem is unlikely: such
factors rarely determine the startup time, i.e., which times are Before and which
After.

The BACIPS setup avoids the assignment problem for the same reason. The
chance of the error problem is reduced since the source of additional variation
must affect one site differently from the other in a way not anticipated by the
model. This can happen in two ways: broadscale changes which are incorrectly
modeled (e.g., multiplicative effects represented as additive) and which differ
more between than within periods; and large, long-lasting, local changes at either
site, occurring at about the same time as the alteration but not related to it.

The use of several models is the main check on differential effects of broad-
scale changes. Environmental variables might also be used for this. For example,
as a check on El Nifio effects, Schroeter et al. (1993) found the same temperature
changes at all sites, and greater bottom disturbance at the Control, suggesting that
EI Nifio effects could not account for the greater decline at the Impact. However,
this check cannot eliminate the possibility of identical environmental changes
having different biological effects at different sites. Using environmental vari-
ables for blocking, or as covariates, to show that estimated biological effects of
the alteration are similar under different environmental conditions, or (since
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some effects may be expected to vary with conditions) that they agree with
expectations, may help, but this may be difficult if data are sparse.

Additional checks are possible with multiple Control sites. Results using dif-
ferent Controls should be similar, or the differences explainable. A single model
incorporating all Control sites, and allowing for systematic location effects and
for both temporal and spatial correlation, may allow more realism and flexibility,
and reduce the “errors in variables” problem (since the “unaffected” abundance
will be more accurately estimated), and still retain more degrees of freedom
(number of observations — number of estimated parameters) for estimating
variance. In particular, multiple Controls may give a much better idea of the
likely variability due to naturally-arising, large, long-lasting local perturbations
which might mimic or mask an alteration effect.

However, multiple Controls offer no guarantees. The sites are not random,
since Impact, at least, will have been deliberately chosen. It may well be
suggestive (in a study with After data only) that the mean of the Impact site over
the After period is (say) smaller than all the Control means, or (in a Before-After
study) that the difference between the Before and After means was greater at the
Impact site than at any of the Controls, but it is not possible to attach a standard
error, confidence or P-value to this without several dubious assumptions: selec-
tion of the Impact site was “effectively” random (e.g., the reasons for its selection
are unrelated, directly or indirectly, to the abundance of the species under study),
and the means or changes in means at the different sites are independent (e.g.,
neighboring sites are not expected to have more similar changes than distant
sites). A “single control” study could get misleading results if an extraneous
factor affects the Control. Multiple controls protect against this, but not against
an extraneous factor affecting the Impact site, or affecting some Controls but not
others.

Multiple controls might even be less reliable than a single control if an extra-
neous factor affects the Impact site and nearby, but not distant, Controls, or if the
more distant Controls track the Impact site poorly. Thus, as noted by Underwood
(1992, Chapter 9) and others, multiple Controls (and multiple Impacts, e.g., sites
which let us check that the putative effect decreases with distance from the alter-
ation) offer the possibility of more convincing causal arguments and of
reductions in the effects of both natural temporal variation and model uncertainty,
but these gains require careful modeling and analysis.

Stronger semi-experimental evidence arises if the potential cause can be
applied, removed and then reinstated (Cox 1992). Effects on individuals during
operation can be compared to effects during brief shutdowns (Raimondi and
Schmitt 1992). Effects on populations may require long shutdowns, but an exam-
ple is given by Granelli et al. (1990): the operation of a sewage plant was
suspended for several months to allow comparison with “plant on” conditions.
This seems to provide good evidence of the effect of an installation’s operation;
its existence may have other effects (e.g., provision of substrate or alteration of
water movement) that cannot be checked this way.
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piscussion

Impact assessment, like other observational studies, is likely to be messy,
even after a conscientious effort to apply the formal techniques of mathematical
statistics. Decision makers need to combine quantitative information of disparate
kinds. The biological aspects alone may involve more than one general
parameter (e.g., mean abundance, mean size), usually for more than one species.

Even for a single general parameter, like mean abundance, it may not be pos-
sible to describe the formal results succinctly and unambiguously. The main
reason for this is model uncertainty. Formal results focus on estimates of the
parameters of a stochastic model, but several models are likely to be both plau-
sible and compatible with the data. It seems misleading to ignore this by
considering only one simple model. Rather, estimates should be made from two
or more models that seem to fit the data, and the variation in the results described
as part of the measurement of uncertainty. However, this can be done only
roughly if, as is likely, the parameters of these models mean different things.

These problems may rot apply to all variables of interest. Appropriate models
may be clearer for physical, chemical or physiological variables. Osenberg et al.
(Chapter 6) give examples where the ratio of effect size to temporal standard
error seems lowest for physiological variables. Multivariate analysis may reveal
composite variables with low temporal variation and potentially high sensitivity
to the alteration, such as linear combinations of (possibly transformed)
abundances of different species or groups (Carney 1987), though a variable’s
suitability depends on its importance, and these composites may be hard to
interpret.

Some of the difficulties described here may decline as our understanding
grows. It would be useful to develop a kit of tractable models based on plausible
assumptions, known mechanisms and empirical experience. Well-documented,
archived data sets of assessment studies (even the Before or After data alone), or
multisite studies that were not intended for monitoring, could give clearer ideas
of temporal “tracking” between neighboring sites: the role of site features (depth,
substrate, etc.) or of species life-history characteristics, the likelihood of periodic
cycles and long-term serial correlations, and the most useful auxiliary environ-
mental parameters. Impact assessment studies could also help classify the types
of effects to be expected for given types of alteration and of impact site. They
may also help weed out approaches (e.g., choices of parameters) that do not work
well and identify others with promise: see Carney (1987) for examples.

However, given the variety of ways in which regions can differ, it is unlikely
that model uncertainties will disappear. Indeed it is unlikely that we will ever
hfiVC an exactly correct model. Thus formal inference will need to include both
diagnostic checks to exclude plausible models that do not fit the data, and rough
Measures of model uncertainty from those not excluded.
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CHAPTER 8

ESTIMATING THE SIZE OF AN EFFECT
FROM A BEFORE-AFTER-CONTROL-IMPACT
PAIRED SERIES DESIGN

The Predictive Approach Applied to a
Power Plant Study

James R. Bence, Allan Stewart-Oaten,
and Stephen C. Schroeter

Study of unreplicated perturbations to ecological systems is of practical
importance in both applied and basic research. Obviously, after the perturbation
has occurred we cannot observe the state of the Impact site in the absence of the
perturbation. Nevertheless, our basic goal is to estimate what this condition
would have been, and compare this estimate with the observed (perturbed)
condition. Here we consider this goal in the context of the Before-After-Control-
Impact Paired Series (BACIPS) design (Stewart-Oaten et al. 1986, Chapter 7). In
this design, paired samples are collected a number of times, both Before and
After the perturbation, simultaneously (or nearly so) at both a Control and Impact
location. In what follows we assume that the effect of the perturbation lasts
through the After monitoring period, and to streamline the presentation we
consider only the simplest case where its magnitude does not show a systematic
trend with time, neither growing in size nor dying away.

The basic idea behind the BACIPS design is that there can be natural differ-
ences between the Control and Impact sites, and temporal variability operating
on a large spatial scale that influences both sites similarly (Stewart-Oaten et al.
1986). By sampling at both Control and Impact on repeated surveys during the
Before and After periods, the design “controls” for such natural variation.
Heretofore, the standard analytical approach, using the resulting BACIPS data,
was to calculate the difference between Control and Impact values (which may
be transformations of the original data) on each date (henceforth termed a
“delta”), and test whether the mean of these deltas changes from Before to After
the perturbation (Stewart-Oaten et al. 1986, 1992, Carpenter et al. 1989).

Previous attention has focused on how the null hypothesis of no difference
between the Before and After mean deltas (i.e., no effect of the perturbation)
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should be tested when the formal statistical assumptions are violated. This has
included a consideration of the effects of serial correlation in the deltas (Hurlbert
1984, Millard et al. 1985, Stewart-Oaten et al. 1986, 1992, Carpenter et al. 1989,
Schroeter et al. 1993), how to test and correct for this potential problem (Stewart-
Oaten 1987, 1992, Carpenter et al. 1989, Schroeter et al. 1993), and the validity
of parametric and nonparametric tests to violations of distributional assumptions
(Carpenter et al. 1989, Stewart-Oaten et al. 1992).

Here we suggest a change in emphasis and consideration of alternative
approaches. We agree with Stewart-Oaten et al. (1992), Stewart-Oaten (Chapter
2), and Schroeter et al. (1993) that our primary goal is to obtain an estimate of
how large the effect is (the effect size) along with some measure of the accuracy
of this estimate (e.g., a confidence interval), and that “P-values” are of secondary
importance. Although it is possible to obtain estimates of effect size using the
standard approach, the estimates are based on a specific model that requires time,
location, and perturbation effects to be additive. One approach to violations of
the additivity assumption is to transform the nonadditive data into a form that is
additive (say, by taking logarithms). As we will illustrate, however, it is possible
that no simple transformation exists for which the resulting data are additive.
Even if the natural time and location effects are additive after the transformation,
the use of a particular transformation carries with it implicit assumptions about
how the perturbation influences the Impact site. Thus, the standard approach
lacks flexibility for modeling the perturbation.

In this chapter we explore an alternative “predictive” approach, where the
Control value is treated explicitly as a predictor of the Impact value (Mathur et
al. 1980, Stewart-Oaten et al. 1992, Stewart-Oaten, Chapter 7). This provides a
natural way to include other predictors and allows us to explicitly model effects
whose size can vary with environmental conditions. The predictive approach has
its own assumptions and limitations, however, and it often will be hard to choose
between the model used in the standard BACIPS approach and a predictive
regression model. In agreement with Stewart-Oaten (Chapter 7), we think that an
application of a variety of different plausible models like these can provide some
indication of model uncertainty.

In three core sections below we first discuss the model underlying the stan-
dard approach, present some difficulties with this approach, and then present an
application of the predictive approach. We use an example data set from studies
of the effects of a nuclear generating station’s discharges on giant kelp
(Macrocystis pyrifera) in these sections. Hence, we present relevant background
on the example data set in the next section before turning to the core topics.

Background on the Example Data Set

These data come from a study of the influence of the “new” Units 2 and 3 of
the San Onofre Nuclear Generating Station on the marine environment. This
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facility is located on the southern California coast between Los Angeles and San
Diego. The new units became fully operational in May of 1983. A priori, the
cooling system of these units was predicted to adversely influence the San
Onofre kelp forest by increasing particulate flux and reducing the light levels on
the ocean’s floor within the kelp forest (Murdoch et al. 1980, Ambrose et al.,
Chapter 18). Giant kelp first settle to the bottom as a microscopic stage and even-
wally develop and grow to lengths of tens of meters, reaching the sea’s surface
and forming a canopy. Successful development of the microscopic stages
requires that critical levels of light reach the bottom substrate, and ambient lev-
els of light are often near or below the critical levels (Dean and Jacobsen 1984,
Deysher and Dean 1984, 1986). Flux of particulates near the bottom can have
adverse effects on the early stages of giant kelp through abrasion or burial
(Devinny and Volse 1978). Furthermore, successful development of giant kelp in
the San Onofre area requires hard substrate, and increased settlement of particu-
lates has the potential to bury hard substrate.

The once-through cooling system of each unit consists of a single intake in
shallow water and a diffuser system for returning the seawater extending over the
range of depths of the kelp forest, located immediately to the northwest of forest
(see Ambrose et al., Figure 18.1). When fully operational, the combined cooling
systems of the new units circulate and discharge 100 m3 per second, and can cre-
ate a turbid (dirty) plume, both by moving turbid inshore water offshore and by
entraining turbid bottom water in the discharge area. The plume of the discharge
tends to be moved over the San Onofre kelp forest by the predominant southeast
currents. Reductions in light levels (Reitzel et al. 1995), changes in the local cur-
rent pattern (Elwany et al. 1990), and increases in the particulate settlement rate
(Bence et al. 1989), all apparently due to the discharge system, have been report-
ed. Schroeter et al. (1993) report that the discharge of the generating station has
led to substantial reductions in the densities of invertebrates associated with the
hard bottom of the San Onofre kelp forest.

The example data collected under a BACIPS design are presented in Figure
8.1. These data were collected by side-scan SONAR in the Impact kelp forest
(San Onofre) and a Control kelp forest located approximately 5 km northwest of
the discharge (San Mateo). Surveys were done at (usually) 6-month intervals
over a study period extending from 1978 through 1989. For each survey the side-
Scan records were examined and maps of different categories of “adult” giant
kelp density were constructed (Murdoch et al. 1989). Here we report on areas
occupied by moderate and higher density categories, corresponding to densities
exceeding approximately 0.04 m™2.

In the following sections these example data are analyzed and manipulated
using a variety of methods. The goal of this process is to illustrate an approach
for estimating the magnitude of effects due to the power plant. In our opinion,
tbis data set is the best available for estimating such effects because of its rela-
tively long duration of measurements related to kelp density. We stress, however,
that the case for adverse effects of the generating station on the kelp forest is
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Figure 8.1. Data on areas occupied by densities of giant kelp plants exceeding approximately
0.04 m-2, as determined by side-scan SONAR for the Impact (San Onofre kelp forest) and Control
(San Mateo kelp forest) sites over time. Data were collected by Ecosystem Management Associates
for 300 survey areas at each site (see Murdoch et al. 1989). Dashed vertical line separates Before and
After periods.

based on many more data than those in the example set, including environmen-
tal measurements and mechanistic studies cited above, experimental outplants of
various stages of giant kelp, other measures of kelp abundance, including counts
on fixed transects and estimates from down-looking SONAR, and concomitant
studies of potentially confounding factors such as sea urchin abundance and
localized changes in the oceanic environment (Bence et al. 1989).

The Standard Approach ~The Underlying Model
and Implications

The idea that an actual population trajectory over time is a single realization
of a stochastic process is central to the standard procedure, and to the alternatives
suggested here. This concept is discussed extensively by Stewart-Oaten et al.
(1986), and Stewart-Oaten (Chapter 7) and we will not repeat that detailed dis-
cussion here. We note that a key consequence is that the actual population value
at a given place and time will usually differ from its expected value (the process
mean), which itself is time (and space) dependent. Estimates (say of population
abundance) can further deviate from this mean because of measurement error.
Because replicate observations collected at the same time cannot provide infor-
mation on the variability of the actual population about its expected value, we
treat sampling dates as our level of replication. Of course, within-survey repli-
cates might be collected to reduce sampling error, and our estimate of abundance
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or other parameters for that survey would then be the average or some other sum-
mary of these.

The standard approach assumes “additivity,” meaning that in the absence of a
perturbation effect the expected value for an observation could.be expressed as
the sum of time and location effects. We can write this assumption as:

Hijok) = Li+ Tk,

where i) is the expected value at location i (I or C for Impact or Control) and
time j within the kth period (B or A for Before or After the perturbation), L is the
natural location effect and T is the time eftect. This additivity assumption implies
that the deltas (Impact - Control values) all have the same expected value in the
Before period, namely A;gy = Ag = L - L¢ for all j. When there is a perturbation
effect (i.e., in the After period at the Impact site), we also model this as additive:

Hijca) = Ly +Tja) + E,

where E is the effect of the perturbation. Therefore Aj sy =Aj =L;—Lc+E. Note
that the deltas have the same expected value within periods, but these expected
values differ by an amount E between periods. An alternative way of viewing the
additivity assumption is to note that it implies a particular linear relationship
between expected Impact and Control values, namely pyjx) = A + ugjx)- Thus
the slope stays equal to one and the perturbation changes only the intercept.

While the idea of additivity of effects is appealing, it is easy to envision cases
where the untransformed data would not be additive. For example, the untrans-
formed data might follow a multiplicative rather than additive model, so that the
expected Impact value tends to be a constant multiple of the expected Control
value rather than differing by a constant number. In general, failure of the addi-
tivity assumption could lead to inefficient tests or to artifactual effects (Stewart-
Qaten et al. 1986, 1992). For our multiplicative example, if the Impact value
tends to be half the Control value, and overall abundance increases from the
Before to After period, the mean Impact - Control delta would decline, even with
no effect of the perturbation. We could solve this problem and achieve additivity
in this case by taking a logarithmic transformation. More generally, we could
consider a class of transformations, say of the Box-Cox form y = (x + co)* (Box
and Cox 1964). One could then test for additivity using the Before data, say by
the Tukey test for additivity (Tukey 1949), for a range of A‘s and ¢’s, and choose
a transformation that passes the test.

Difficulties with the Standard Approach
Limited Flexibility of the Standard Approach

As noted above, for estimation we may need to transform the data so that (on
the transformed scale) the expected Impact value increases linearly with the
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expected Control value, with slope one, both in the Before and After periods,
This can be a restrictive requirement. Here we consider two reasons why ap
appropriate transformation might not exist. First, the Control and Impact sites
could positively covary, and yet there may not exist any monotone transforma-
tion that makes the natural temporal and spatial effects additive. One way for this
to happen is for the expected Impact value to increase to an asymptote as the
expected Control value increases. In this case, the expected Impact value would
exceed that of the Control for low Control values, but the opposite would be the
case at high Control values. In marine systems this situation might arise when
available recruits into both the Impact and Control populations respond in the
same way to environmental fluctuations but with the availability of recruits
always proportionally higher at the Impact site. At higher levels of recruitment,
density-dependent mechanisms could operate at the Impact site and not at the
Control site; in the case of a benthic marine organism this could arise because of
limited substrate at the Impact site.

A second kind of difficulty is that the effect of the perturbation might not be
additive on the same (transformed) scale as the natural fluctuations. For example,
the abundance at the Impact site may naturally tend to be a certain percentage of
the abundance at Control site, but the perturbation might cause a reduction of a
certain number, rather than a constant percentage. As a result, a transformation
that makes data from the Before period additive may not do so for data from the
After period. The kelp data may be an example of this; the log-transformed data
in the Before period appear to be additive (Table 8.1), but the same transforma-
tion fails in the After period.

In the hypothesis-testing context, using a transformation that only works
in the Before period is not a problem. If the After data then are nonadditive,
this implies that the effect of the perturbation is not additive on the same

Table 8.1. Results of Additivity Tests and t-Tests for Differences between After and
Before Deltas (Impact-Control Values)

Additivity t-test
Transformation P-value P-value Effect size
untransformed 0.02 <0.0001 -55.6 ha
log(x) 0.60 <0.0001 -53.0%
1/x 0.45 0.0044 +0.011 ha'!
(x +0.4)2 0.16 0.051 +0.0015 ha2

Note: Effect size is the mean estimated effect calculated from the difference between the average
After and Before deltas. Additivity P-values are attained significance level of Tukey's test for
addittivity. ¢-Test P-values are attained significance level for the hypothesis that the Before and
After deltas have the same mean, using the Welch version of the test, to allow for potentially
heterogenous variances.
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rransformation scale that worked for the natural time and location effects.
Although such a result indicates that the basic model used by the standard
approach is not a realistic portrayal of the system under study, the hypothesis test
for a perturbation effect remains valid. This is true because the validity of the test
depends on the assumption being true only under the null hypothesis of no effect.
However, estimates of effect size, and descriptions of how they vary with condi-
tions, could be markedly off, and we think these should be of primary interest.

Choosing Transformations and Interpreting Effects

Even when a suitable transformation exists, there can still be problems in
applying the standard approach. In practice it can be difficult to choose a trans-
formation, or to interpret the effect, which is now measured in the units of the
transformed variable. Table 8.1 gives results of t-tests used to test for a difference
between the mean Before and After deltas for the giant kelp data for four possible
treatments of the data. First, the data are untransformed. Second, the data are log,
transformed. Third, reciprocals are taken (i.e., 1/x), and fourth we take the Box-
Cox transformation (x + 0.4)-2. In three cases the t-test for an effect is statistically
significant at the 0.05 level, and in the fourth it is nearly so. The additivity
assumption cannot be rejected for the three transformations, but can be rejected
for the untransformed data. Estimated effect sizes are also given in the table.

For the first three treatments of the data these effect sizes have an intuitive and
qualitatively consistent interpretation; a specified decrease in area (untrans-
formed), a specified percentage decrease (log, transform), or an increase in the
resources required to maintain one unit area of kelp forest (1/x transform). The
fourth data treatment, an arbitrarily chosen Box-Cox transformation, does not
have such an obvious interpretation, although the qualitative result, a reduction
in kelp area, is consistent.

Each of the treatments of the data presented above imply that the effect of the
perturbation acts to change the relationship between Impact and Control in a par-
ticular way. We illustrate this for hypothetical examples (Figure 8.2). In Figure
8.2a we plot relationships between the expected Impact and expected Control
values under the assumption that the data follow an additive model and the
perturbation causes a decline at the Impact site. We next consider the case where
alog-transformation would be appropriate. In this case the expected Impact value
is a constant percentage of the expected Control value and this percentage
declines by a fixed amount After the perturbation. Here the perturbation causes a
change in the slope of the relationship between expected Impact and Control
values and the intercept is fixed at zero (Figure 8.2b). The portrayed relationships
in Figure 8.2c were chosen as an example where our Box-Cox transformation
(x + 0.4)-2 would achieve additivity. In the standard approach we suspect that
Careful evaluation of the implicit assumption of these Impact versus Control
relationships is rare.
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Figure 8.2. Hypothetical relationsh:ps between expected Impact and expected Control values. In
each case the perturbation has caused a reduction in the expected Impact values. (a) The additive
relationship assumed by the standard approach, (b) a multiplicative relationship leading to a constant
percentage reduction in the Impact value for all Control values, (c} a relationship chosen so that if the
data were (x + 0.4)2 transformed, the transformed data would be additive.

An Alternative: The Predictive Approach

The primary value of the Control is that it acts as a predictor of the Impact
value, and here we consider alternative analyses where this concept is an explicit
part of the method. The assessment problem can then be thought of as one
of comparing two regressions, or fitted functions; the function which best
predicts the Impact value from the Control value in the Before period, and the
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corresponding prediction function for the After period (Stewart-Oaten et al.
1992, Stewart-Oaten, Chapter 7). We could predict the Impact value as a joint
function of other variables (e.g., season, current direction, sedimentation) along
with the Control value, and could force certain parameters to be the same in both
periods (under the assumption that the perturbation did not influence them).

The basic idea behind this approach is that we use the predictive functions to
estimate the expected value at the Impact site given the Control for both the
Before and After periods. The difference in the expected values, conditional on a
particular Control value, is taken as an estimate of the effect of the perturbation
(under one set of conditions). This approach attacks the restrictions associated
with additivity in two ways. First, any function can be used to model the rela-
tionship between Impact and Control values within a period. Second, we can use
different functions in the After period than in the Before period, and this allows
the perturbation to influence dynamics differently than we might expect from a
natural change. A critical implicit assumption is that changes in these condition-
al expectations (Impact given Control) occur only due to the perturbation. Often
this will not be strictly true for reasons related to error in variable problems (e.g.,
Seber and Wild 1989) (recall that the Control value differs from the expected
value of the process that generated it). This is likely to be more of a problem
when the distribution of Before and After Control values differ markedly (see
Stewart-Oaten, Chapter 7). Because of this difficulty we recommend that the
Before and After distributions of Control values be examined to ensure they have
similar ranges and variability, and that regression-based estimates be compared
with estimates from other models (e.g., the standard BACIPS model).

We now illustrate this approach, again using the side-scan SONAR data on
area occupied by giant kelp.

Finding Appropriate Functions

Figure 8.3 shows a plot of Impact versus Control areas (same data as Figure
8.1), with Before and After data distinguished. There is a suggestion in these data
that the relationship between Impact and Control may be nonlinear in the Before
period, with the Impact value reaching an asymptote. Our approach was to fit
four models to the data (each separately by period): linear with assumed zero
intercepts, linear with intercepts, a quadratic model, and a nonlinear logistic
model. For the logistic model we assumed that the asymptote detected during the
Before period remained unchanged in the After period. Thus our approach was
to fit the logistic model,

I=oU(1 + BekC),

to the Before data, then fix the parameter determining the asymptote (ct) and
estimate the remaining two parameters based on the After data. We discarded the
Quadratic model early on because it predicts a dome-shaped relationship between
Impact and Control for the Before period over the range the function needs to be
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Figure 8.3. Relationship between observed Impact and Control values of giant kelp area. Solid
lines indicate fitted linear model with intercepts, dashed lines indicate fitted logistic model (see text).

used in the After period. Without good evidence to the contrary, we required that
as conditions continued to “improve” at the Control they also improve at Impact,
so that the expected Impact value increases monotonically with the Control
value.

Using the “extra sum of squares” principle (e.g., Draper and Smith 1981) we
tested whether the added complexity of nonzero intercepts was warranted for the
linear models. The results show that the model with nonzero intercepts fits sig-
nificantly better than the simple model assuming direct proportionality between
Impact and Control (F; 53 = 4.91, P < 0.025). The linear regression lines (with
intercepts) are plotted on Figure 8.3. For any given Control value the effect size
can be estimated by subtracting the Before prediction from the After prediction.
The predicted relationships between Impact and Control for the logistic model
are also given in Figure 8.3. For both models the residuals are plotted against the
Control value for each period in Figure 8.4. Both linear and logistic models fit
the data reasonably well (i.e., the residuals seem to show no patterns in relation-
ship to the Control value), and we chose the linear model because it required the
estimation of one fewer parameter.

Effect Size and Its Confidence Interval

With the predictive approach we do not assume that there is a single effect size
under some appropriate measurement scale. Effect size can vary with the magni-
tude of the Control value, and with other predictor variables if they are included
in the analysis. These effect sizes can be estimated simply by taking the differ-
ence between the predicted After (1.0, A) and Before (IAO‘B) “Impact” values for
some specified Control value C,,.
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Figure 8.4. Residuals from linear model with intercepts and logistic model (see text) versus
Control value. Before residuals are indicated by open triangles, After residuals by solid triangles.

We constructed approximate (1 — o) confidence intervals for the estimated
effects at a specified Control value, E, = I, g — I, A, for the linear model with
intercepts as

Wwhere ¢ refers to critical value of the ¢ distribution, v, indicates the degrees of
freedom, and o, is the estimated standard deviation of the estimated effect at C,,.
O, was calculated as V@3 g + 62 5) where 6, 5 and &, 4 are the standard devia-
tions of IAO‘B and IAO, A» Which were calculated using standard regression approach-
es (e.g., Draper and Smith 1981). Taking into account that the standard deviations
of the estimates of the expected Impact value can differ between the periods, v,

can be estimated with a Satterthwaite approximation (e.g., Ames and Webster
1991):
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where v, is the degrees of freedom (n - number of parameters estimated) associ-
ated with period k. Note that our approach for constructing confidence intervals
does not require that the prediction equations be linear; approximate confidence
intervals can be calculated whenever estimates of the appropriate variances and
degrees of freedom are available.

Estimated effect sizes (still for the linear model with intercepts) as a function
of Control values, along with their approximate 95% confidence intervals, are
plotted in Figure 8.5. Effect size increases with the Control value and the effect
size as a percentage of the unaffected Impact value (i.e., the Before prediction)
increases modestly with the Control value.

Although effect size can depend upon the value of the Control or other vari-
ables, the concept of an average or net effect size (and its associated confidence
interval) is of practical importance. For example, some estimate of the average
percent loss might be required in order to implement a mitigation plan. Then an
artificial reef that is expected to provide an equal amount of kelp could be
designed. In this situation some consideration needs to be given to what we mean
by an “average” effect. Here we are interested in the average long-term effect, so
we generate an estimate of the long-term distribution of Control values, and cal-
culate the expected loss (both in area and as a percentage) over this distribution.
Our distribution of Control values is taken as given, and is assumed to be the
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Figure 8.5. Estimated expected loss (effect size) in kelp area as a function of Control value, with
95% confidence intervals, for the linear model with intercepts.
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observed set of Control values over the 11-year study including both Before and
After data. Based on this set of Control values, the estimated average loss was
55.0 ha, or 52.0%. A confidence interval for the average losses was generated
using @ nonparametric jackknife method (e.g., Miller 1974). This method
requires leaving out each of the 27 surveys one at a time, refitting the regression
models with the data point deleted and calculating the average reduction leaving
out the selected observation in this calculation also. The variation in these aver-
ages was used, following usual jackknife procedures, to calculate a confidence
interval. The confidence intervals were (-71.1, -38.0) ha, and (-65.3, -39.2)%.
This estimate of “net effect” and its confidence interval was similar to what we
obtained for the standard approach using log-transformed data (effect = -53.0%,
95% confidence interval = (-65.7, -35.7)%), although we stress that this is not a
guaranteed result (see Discussion).

The Independence Assumption

Although the problem of independence is not peculiar to the predictive
approach, the possibility of violating this assumption needs to be considered in
virtually all applications, including our example. To this point all our estimation
and hypothesis testing have been done under the assumption that residual errors
are uncorrelated. If there is substantial autocorrelation then (i) hypothesis tests
given above are biased, (ii) the ordinary least squares estimates are not the most
efficient, and (iii) we should take the true error structure into account when cal-
culating confidence intervals. Within the context of general linear models, the
usual approach is to test for first-order autocorrelation using the Durbin-Watson
statistic Q. For the linear model with intercepts, the estimated first order auto-
correlation was negative, small in magnitude (-0.091), and not statistically sig-
nificant by the Durbin-Watson test (Q = 1.81, P > 0.05: the null distribution of
the Durbin-Watson statistic was approximated by matching the first three
moments of a beta distribution to @ + bQ for suitably chosen a and b, as sug-
gested by Henshaw (1966) and evaluated by Durbin and Watson (1971)). Thus
the available evidence indicates that first-order autocorrelation of the residuals is
relatively weak for the kelp example.

Other types of violations of the independence assumption are possible. For
example, residuals within a year (or some large block of time) could be
correlated. Rather than performing many specific tests (none of which we have a
good a priori basis for), we have plotted the residuals (still for the logistic model)
against sampling date. There is some suggestion that the effect might be
Increasing during the first few surveys of the After period (i.e., the residuals are
decreasing), but otherwise there are no obvious patterns (Figure 8.6).

. We conclude this section by noting that there could still be weak autocorrela-

tion that we failed to detect, or violations of the independence assumption in
Ways we have failed to consider. This is one more reason to treat confidence
Intervals only as approximate guides in interpretation.
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Discussion

In the predictive approach we consider a Control to be a predictor, perhaps
combined with others, of an Impact value. By comparing predictions based op
data collected Before a perturbation with predictions based on data from the
After period we can estimate the magnitude of an effect. We have contrasted this
approach with the standard (BACIPS ¢-test) approach. The predictive approach is
more flexible, in the sense that it can deal with effects of a perturbation, or nat-
ural temporal and spatial effects, that are not additive. In another sense, howev-
er, our implementation of the predictive approach is more restrictive; it assumes
that changes in the expected value of Impact given the observed Control will
change only due to effects of the perturbation [see Stewart-Oaten (Chapter 7) for
discussion of this assumption]. Because the different models make different
assumptions, and it may be hard to choose between them, we recommend that
evaluations include estimates of effects based on several different models or
approaches. When estimates from different methods are similar this will increase
confidence in the conclusions, while large differences would indicate that model
uncertainty may add greatly to the stated uncertainty obtained from any single
method (Stewart-Oaten, Chapter 7).

For the kelp example, the estimated net effect is not appreciably different
when using the predictive approach than for the standard approach on log-trans-
formed data. This suggests that the formal estimates of effects and their confi-
dence intervals are not highly dependent on arbitrary properties of a particular
model. In large part, this favorable result occurred because the predictive -
approach yielded Impact-Control relationships that were similar to those implied
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Figure 8.6. Residuals from linear regression (with intercepts) between Impact and Control giant
kelp areas plotted against time. Dashed vertical line separates Before and After periods.
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by the standard BACI t-test model applied to log-transformed data (compare
Figures 8.2b and 8.3). This similarity, of course, is not guaranteed.

Use of the predictive approach may help us rule out some models. When using
the predictive approach we are explicit about the fact that the Control is a pre-
dictor. This naturally leads us to think about whether our data fit the regression
(or other model) we use, and whether our estimates of effects in the After period
require us to predict outside the bounds of the Before data. This is possible to
some degree when using a t-test, but there is nothing inherent in the test to pro-
mote plotting Impact versus Control, or to look at whether the relationship
changes at extreme values. In addition, the course of action when lack of fit is
observed may not be obvious for the ¢-test. This is still tricky in regression analy-
ses but is a standard part of the approach (e.g., Draper and Smith 1981, Carroll
and Ruppert 1988, Seber and Wild 1989).

We know of two examples in the literature where a form of the predictive
approach has been used. Mathur et al. (1980) tested for differences in
zooplankton abundance between Before and After operations of a power plant’s
cooling system started by analysis of covariance, using temperature, stream
water flow and abundance at a Control site as covariates. Reitzel et al. (1995)
analyzed irradiance data from the San Onofre study; they stratified the data on
the basis of current direction and followed the standard approach (¢ test on deltas)
within the strata. This stratification by current direction allowed them to detect
effects whose sign depended upon current direction. Both of these studies incor-
porated elements of the predictive approach, which we think provided insight
beyond what could have been obtained based only on a test comparing the means
of the Before and After deltas. We encourage an even more flexible and
exploratory approach.

We conclude this largely statistical chapter by stressing that statistics can be
only part of the equation. We recognize that any analysis will rest on assump-
tions, not all of which can be adequately tested (Schroeter et al. 1993, Stewart-
Oaten, Chapter 7). In the end, decisions about the reality and importance of
an apparent effect should depend upon the weight of all the available
evidence—-including the results of mechanistic studies, consideration of potential
alternative explanations, and consistency among different sets of data—not just
the P-value from a single test, or even estimates of the effect and associated con-
fidence intervals.
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SUMMARY

I discuss the estimation of the abundance of a biological population, its logarithm, and the variances
of these estimates, from a sequential sampling scheme with minimum and maximum sample sizes.
Observations are counts of organisms in randomly chosen “packets” such as cores, branches, bushes,
and so forth. For preassigned values m, n; and ng, samples are taken until (a) at least n; packets
and (b) either m positive packets or a total of no packets have been observed.

Abundance estimates are based on an estimate of the fraction of positive packets given by Kre-
mers (1987, Technometrics 29, 109-112), with a modification to avoid estimates of zero. Estimates
of log abundance are given by log(estimated abundance) with an adjustment for bias due to the
concavity of the log function. Two adjustments are considered, one based on Taylor series expansion
(the delta method) and_the other on the bootstrap. These techniques are also used to estimate the
variance of the estimate of log(abundance). Simulations suggest that both methods are better than
not adjusting, though the gain is small compared to the standard deviation of the estimates. The
bootstrap estimates are less biased than the Taylor series estimates but have larger variances, so
that the Taylor series estimates have smaller mean squared errors. The variances of the sequential
estimates of log(abundance) tend to be only weakly dependent on the true abundance.

1. Introduction

Population abundances of species are perhaps the fundamental currency of ecology. Most measures
of environments or communities are functions of them. Their estimation under various conditions
is one of the major tasks of biometry and statistical ecology.

Assessments of change, or comparisons of the temporal variability of populations of different
species, or of populations in different places, can be distorted because of differences in overall
abundances. A natural way to reduce or eliminate such distortions is to base the comparisons on
log(abundance). For example, Williamson (1984) found that the standard deviation of log(&), where
& is the estimated population abundance, has been the most popular measure of temporal vari-
ability. Because the simplest models of population growth are exponential, plots of log(abundance)
against time are likely to be informative about rates. Also, one way to assess the local effect of
a planned intervention on a species is to compare the mean (over time) of the difference between
the affected population and the population in a nearby unaffected area, before the intervention, to
the mean difference after the intervention; if temporal variation tends to be multiplicative, use of
log(abundance) may be more efficient and more valid than use of raw abundance (e.g., Stewart-
Oaten, Murdoch, and Parker 1986).

In virtually all practical cases, the true population abundance is not known but must be estimated
from samples. Three problems arise from this.

(i) The estimated abundance may be zero, and log(0) is undefined. This is a common problem,
with no clear resolution. The usual response is to use either log(& + ¢) or max{log(é&), log(c)}
for some constant, c. The choice of ¢ can have a strong influence on results of analyses, but it is
largely arbitrary: The best known formal method (Box and Cox, 1964) does not perform well
in this case (Atkinson 1985; Berry, 1987), and other arguments have been ad hoc (“pretend
we saw half an extra animal”), “rather recondite” (and not given: Mosteller and Tukey, 1977),

Key words: Abundance; Bias; Bootstrap; Delta method; Sequential sampling; Zeros.
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or, perhaps best, based on minimizing the effects of nuisance parameters in particular models
(Anscombe 1948; Berry, 1987).

(ii) A fixed sampling effort often leads to greater errors in the estimate of log(abundance) when
abundance is small than when it is large. If the variance of & is o2 and zeros can be avoided, the
variance of log(@) is approximately o2 /a2, where o is the true abundance. If 6% = ba? for some
constant b (a case of Taylor’s [1961] “Power Law”), the variance of log(&) is approximately
independent of «, but this assumption may not hold at small abundances or for sampling
on small scales. If a fraction o of possible quadrats has one animal each, while the rest are
empty, then o is approximately proportional to a, not to a?, and the variance of log(&) will
be larger for small a.

(iii) The log of a positive unbiased estimate of «, the true abundance, will not be an unbiased
estimate of log(a), but of something smaller, due to Jensen’s Inequality (Feller, 1966, p. 152).
By Taylor series expansion, the bias is roughly —o? / 202, so log(a) may be underestimated by
more when « is small than when it is large, in view of problem (ii). This could affect estimates
and comparisons of temporal variability of log(c).

Problems (i) and (ii) suggest sequential sampling, to increase the sampling effort at low abun-
dances and decrease the likelihood of sample zeros, without prior knowledge of the (often highly
variable) abundance. In Section 2, I propose a positive, ”almost” unbiased estimator of abundance,
based on a sequential sampling scheme described by Kim and Nachlas (1984) and by Kremers
(1987). In Section 3, I describe two ways of adjusting the log of this estimator for an ”almost”
unbiased estimate of log(abundance), one based on Taylor series expansion and the other on the
bootstrap. These methods also yield estimates of the variance of the estimator. Section 4 gives an
example, and Section 5 reports some numerical results.

2. Sequential Estimation of the Abundance

Our samples consist of counts of animals in randomly chosen “packets.” The packets might be
quadrats; aliquots; net hauls, which “sieve” equal volumes of water; core samples which remove

equal volumes of sand or soil; or twigs or plants of approximately equal size. Write C1,Co, ..., for
the counts on the 1st, 2nd, ..., sample packets. Define
a = EC; = the mean number of animals per packet in the habitat (2.1)

where “the habitat” is the region from which the sampled packets are randomly chosen. A standard
sequential sampling plan is to keep sampling until a specified number of positive packets have been
observed. This is not completely realistic: one must stop sampling eventually. We may also want to
specify a minimum number of packets; if we do not do this, then the minimum sample size is the
required number of positive packets, and this may be too small for estimating variances or other
distributional parameters.

I consider the following sequential scheme.

(i) Choose
n1 = minimum sample size,
ng = maximum sample size, (2.2)
m = minimum number of positive packets required.

(if) Randomly sample n; packets. If these contain at least m positive packets, stop sampling.
Otherwise, continue sampling until either there are m positive packets or there are no packets
altogether. Let

N = the number of packets actually obtained,

2.3
N4 = the number of positive packets actually obtained. (%5)
(iii) Let

N+/TL1 if N = ni,
P =< Ny/ng if N=nz and 0 < Ny <m, (2.4)

(m—1)/(N —1) otherwise.

Thus, }SK is the usual sequential sample estimate of

p = the probability of a positive packet (1.5)
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if the sequential rule causes the sampling to stop at n; < N < ng and is, otherwise, the usual
fixed sample size estimate, for a sample of n; or ng. To avoid estimates of zero, we make
an arbitrary choice between 0 and the smallest obtainable positive value when Ny = 0. Our
biased estimate is

i { i:'/Ignz ; x+=>ng’and Nt =0. (2.6)
(iv) Let
C; = the number of organisms counted in the ith sampled packet,
Cy = {ZC;’/N_}_ %fN.}. > 0, and (2.7)
1 if Ny =0.

Thus, C+ is the average number of animals found in the positive packets, with the minimum
possible value used if none are observed.
(v) Our (biased) estimator of the abundance, «, is

&p = C4-Pp. (2.8)

The sampling scheme in steps (i) and (ii) is a special case of that proposed by Kim and Nachlas
(1984). Their scheme is more general in that it allows a minimum required number of zero packets,
as well as of positive packets. The estimator pg, in step (iii), was given by Kremers (1987), who
showed it to be unbiased, and an improvement over the estimator of Kim and Nachlas (1984). Steps
(iv) and (v) are obvious extensions to the case where we wish to estimate the average abundance
per packet = (proportion of positive packets) x (average abundance per positive packet).

It is easy to show that Ax = C+ Pk is an unbiased estimator of a. Thus, the bias in &y, as given
by (2.8), is P{C+ = 0}/2na.

(vi) The variance of &; is close to that of A unless p is very close to 0. It can be shown that

V(Ak) = 06+ E{pk?/z} + 3V {pk}, (2.9)

where a4+ and cr?;.+ are the mean and variance of the numbers in positive packets (i.e., of C;
given C; > 0). We estimate V' {&;} by substituting estimates for the four terms in (2.9).

We estimate o% . by

2. = sample variance of positive packets if Ny > 1, (2.10)
C+ 71 C+(1 —exp(1 — Cy)) otherwise, )
where C is given by (1.7). The estimate for Ny < 1 assumes a truncated Poisson distribution for
the positive packets.
We estimate a?,_ by C’f_ - s2c+ /N4, using the relations E{C%} = a?,_ +V{C4+} and V{C4+} =
0’%1+ /N4 (because C is an average of N4 observations).

Formulae for V{px} and E{p%/N+} are messier. Kremers (1987) showed that V{px} is the
same as the variance of the estimator of Kim and Nachlas (1984), but with n; + 1 and ng + 1
replacing n; and ng. However, the formula given by Kim and Nachlas is incorrect: It is actually
appropriate for Kremers’ estimator. For the general case with m; nonzéro and mg zero packets
required, straightforward bookkeeping gives

my—1 ng ‘ny—maz
Vipk} = Y li/nalb(ilnz,p)+ > [i/nalbilng,p) + Y [i/na)?b(ilna, p)
1=0 i=ng—ma+1 i=m;

+ Y - D/G-DPWGEmLp) + Y (G- ma)/ (i~ DWW (ilma, q) — p?
i=ni+1 i=n,
o (2.11)
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and
- m1—1 n2 ni1—ma
E{p%/Ny} =Y iblng,p)/n3+ D ib(ilng,p)/nd+ Y ib(iln1,p)/ni
1=0 1=ngz—ma+1 i=my

+ > (m1—1)°W(ilm1,p)/[mai - 1)°) Z (i = ma)W (ilma, )/ (i — 1)?,

i=n;+1 i=n;+1
(2.12)
where ¢ =1 —p,
b(iln, p) = nlp'q"~*/[il(n — 3)1], (2.13)
the probability of 7 successes in n binomial trials, and
W (iln,p) = (s — "¢ "/[(n - 1)!G — n)], (2.14)

the probability of waiting until the ith trial to obtain the nth success. Thus, our estimate of the
variance of &y is

s* = &, B{pk /N+} + (C% — s&, /N+)V{pK} (2.15)

where V{pg} and E{p% /N+} are obtained by replacing “p” and “my” by g and 0 in (2.11) and
(2.12).

If the maximum allowable sample size, ng, is large, these formulae involve formidable hand-
calculating, although negligible computer time. They can be simplified by ignoring or approximating
sums of small terms. The simplest estimates, px (1—px)/n1 for V{px} and px /n1 for E{ﬁ%(/N+}
are negligibly different from the messy formulae if N = n;, that is, sampling stops at the minimum
sample. For larger N, an approximation based on equation (4.13) of DeGroot (1959) seems very
accurate.

3. Estimation of Log(Abundance)

Even if the bias in &, as an estimator of ¢, can be regarded as negligible, log(&;) would still have
a negative bias as an estimator of log(a). We also usually want an estimate of the variance of our
estimate of log(a). This section describes two methods of obtaining these estimates. Throughout,
“log” refers to the natural logarithm, to base e. Our interest is in log(a) = log(E{C;}), not in
E{log(C;)}: in most practical cases, the latter is undefined, because P{C; = 0} > 0; in other cases,
it is likely to depend nonlinearly on the size of the sampling unit—the quadrat, core, aliquot, and
so forth,—which is usually arbitrary.

Taylor series ezpansion. If € = & — a is small compared to ¢, then log(&p) =~ log(a) + /o —
€2/20% + - --. This suggests that, if E{e} = 0 and E{s?} ~ 0% = V(é&), where s° is given in
(2.15) and E and V indicate expectation and variance, then an approximately unbiased estimator
of log(a) is

Lrs = log(é) + 5/265, (3.1)

and that the variance of the first term can be estimated by an estimate of V{e/a}:
Vrs = s?/as. (3.2)
Equations (3.1) and (3.2) are obtained by substltutmg §%/a2 for Gz/a There are ad hoc ar-
guments leading to other estimates of o2/a®—for example, “E{l/ab} ~ 1/a? + 302%/at, so
o%/a? ~ (/{1 + 1252/012} —1)/6.” These did not fare better than s?/&% in numerical simula-

tions.

Bootstrap estimates. A functional, A(F), of the (unknown) distribution function, F, can be esti-
mated by drawing a sample, y, of observations from F' according to a design, D, using it to compute
an estimate, F*(y) = F', of F and computing the estimate X = A(F). The distribution of X can
be estimated by that of the variable A1, which is obtained in exactly the same way as A except
that the observations, y, are distributed according to the known F rather than the unknown F.
Thus, the distribution of X is G(z) = P[MF*(y)) < z|F, D], wherea.s that of ; is the bootstrap
distribution Gp(z) = P[A(F*(y)) < :c]F D] (e.g., Efron and Tibshirani 1993). In particular, the
bias of A can be estimated by E{\1} — X and the variance of A by V{};}.
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The bootstrap distribution is usually estimated by taking a random set of samples y,y2, ..., ¥,
from F, using design D (in our case, the sequential scheme): G gi(z) is the fraction of samples for
which A(F*(y;)) < z. But when F gives positive probability to only a small number of values, and y
has only a few components, one can enumerate all possible samples from ﬁ‘, and their probabilities,
and compute G g exactly. This would often be the case with the sequential sampling scheme because
the maximum number of nonzero values in any sample is n1; frequently it will be less. Enumeration
removes one source of error from bootstrap estimates of variance and bias, the difference between
Gp and Gy, though the difference between G g(z) and G(z) remains. The calculations described
below are for enumeration, although they could be used for random sampling.

In our case, the preliminary estimate, “A(F'),” is log(éy) = log(pp) + log(C4+). Let S+ be the
observed set of positive values, that is, the N4 positive C;’s, so C; = average of the values in
S.+. For instance, if the original sample had three nonempty packets, with values 1, 2, and 2, then
S+ = {1,2,2}. Then, F is given by

P{C=0}=1-pp, and P{C=j|C >0} = (number of j's in S4)/Ny. (3.3)

When Ny =0, P{C=1|C>0}=1.
An estimate of the bias of log(&p) is

By = By + By, (3.4)
where
Bp1 = log(fy) — E{log(fe1) | pv}, (3.5)
the bias estimate for log(pp), and |
By =1og(Cy) — E{log(Cy1) | Bo, S+}

=log(C+) = Y _ E{log(C+1) | S+, N1 = k}P{Ni1 =k | s}, Gl
k

the bias estimate for log(Cy). Here, pp1, C4+1 and Ny are given by equations (2.3)—(2.7), applied
to a random sample drawn as in equations (2.2) and (2.3) from a population distributed as in
(3.3). Under the sequential sampling scheme, both P, and pp; have the same set of possible values
(1/2n2,1/n2,...,(m—1)/n2,(m -1)/(ng - 1),...,(m—1)/n1,m/n1,...,1),s0 P{Ny1 =k | D},
all P{pp1 | P}, and E{log(pPp1) | P»} are easy to compute. E{log(C+1) | S+, N1 = k} is the mean
of log(sample average) over all samples of size k, with replacement, from the set S;.. Computation
is manageable unless k and the number of distinct values in Sy are both large.
Thus, our bias-corrected bootstrap estimate of log(a) was

Lp =log(éy) + Bp1 + Biy. (3.7)

In estimating the variance, I considered only the variance of log(é;), assuming that the bias
corrections would vary relatively little. (The task of simulating the bootstrap of a bootstrap for
Section 5 was also daunting.) We have

V{log(&s)} = V{log(ps)} + V{log(C4)} + 2 cov{log(pp), log(C+)}- (3.8)

With é&p1, Pp1, C+1 and N4 given by equations (2.2)—(2.8), but with the distribution of the C;’s
given by that of C in (3.3), the bootstrap variance estimate is

Vg = V{log(&s1)} = V{log(#s1)} + V{log(C+1)} + 2 cov{log(Bp1), log(C+1)}.  (3.9)
V{log(p1)} = E{log(fp1)?} — E*{log(p1)} again uses the common set of possible values of

and Pp; and the set of probabilities P{pp; | Dp}-
For the second term of (3.9), we have

V{log(Cy1)} = Y E{log(C1)® | Ny1 = k}P{N41 = k} — E*{log(Cy1)}, (3.10)

Both terms are computed like the second term in (3.6), discussed earlier.
For the third term in (3.9):

cov{log(fp1), log(Cir1)} =D E{log(py1) 1og(C1) | Nyx = k}P{k} — E{log(pp1)} E{log(C41)}-
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But, given Ny, C41 and pp; are independent, because the distribution of C11 depends only on
the sample of Nyj drawn from S; while that of pp; depends only on Nj, the number of packets
sampled (cf. equations (2.3) and (2.4)). Thus,

E{log(ﬁbl) lOg(C+1) | N+1 = k:} = E{log(ﬁbl) I N+1 = k}E{lOg(C+1) I N+1 = k} (3.11)

The first term is obtained from the set of possible values for pp: In fact, “Ny1 = k” uniquely
determines log(pp1) unless k = m. The second term was discussed following (3.6).

4. Example

Table 1 shows counts of the California red scale, Aonidiella aurantii, on a grapefruit tree (W. W.
Murdoch, unpublished data). Samples A and B were taken in October 1986, C and D in January
1987. Each was a fixed sample of 10 “packets.” Each packet used the section consisting of the most
recent four flushes (growth spurts) of a randomly chosen twig. A “packet” was the section’s stem
for A and C and its leaves for B and D.

Table 1
Counts of red scale on leaves and twigs
1 2 3 4 5 6 7 8 9 10
A 7 1 25 41 6 17 3 0 0 7
B 0 0 0 6 0 1 0 0 0 3
C 0 0 1 4 0 0 0 0 1 0
D 1 0 0 0 0 0 0 0 0 0
&y s? log(éw) Lrs Lgp Vrs Vs
Estimates for samples A, B and C, if n; =10, n2 =100, m = 3
A 10.701 7.4356 2.3702 2.4464 2.4478 0.1523 0.1709
B 1.00 0.3524 —0.0000 0.1762 0.1872 0.3524 0.4189
C 0.60 0.1417 —0.5108 —0.3140 —0.3090 0.3937 0.4446
Estimates for n1 =6, ngo =100, m =2
A 15.503 9.9833 2.7408 2.8241 2.8219 0.1664 0.1844
B 1.17 0.8533 0.1542 0.4676 0.5037 0.6269 0.8595
C 0.83 0.3727 -0.1823 0.0860 0.1103 0.5366 0.6910
Estimates for n1; =6, no =100, m =3
A 15.503 9.9833 2.7408 2.8241 2.8219 0.1664 0.1844
B 0.74 0.3195 —0.3001 —0.0089 —0.0556 0.5823 0.4941
C 0.50 0.1498 —0.6931 —0.3936 —0.4411 0.5992 0.5083

The sequential estimates are illustrated under three setups. Each has a maximum sample of
ng = 100. They differ in the initial sample, n;, and the required number of positives, m. Sample D
is incomplete for all setups and would lead to further sampling. It was problems of this sort that
led to the present work on sequential sampling, which has not been implemented yet. For the first
and second setups, none of the samples would have gone into the sequential phase; the estimates
are similar to, though not identical to, the fixed sample size estimates. In the third case, samples
B and C both need the sequential phase to obtain the required number of positive packets. The
observations for sample B are the same as for the first setup, but the estimates are different: In
particular, P{positive} is estimated by (3 — 1)/(10 — 1), not by 3/10.

5. Numerical Results

For all simulations summarized here, the C;’s were independent observations from a negative bi-
nomial distribution, classified by its mean, o, and by its value of ¢ = (variance — &)/ a®. If C; is
seen as the number of failures before the kth success, when P{success} = p, then a = k(1 — p)/p.
With @ = 1/p and P = Q — 1, the probabilities are the terms of the expansion of (Q — P)'k, and
a = kP. In both cases, ¢ = 1/k; this seems preferable to k as a measure of “clumping” because the
Poisson distribution has ¢ = 0, and increases in ¢ imply increases in clumping. The probability of
ce ok -1/c —a .
an empty packet is p* = (ca + 1) (or €™ for the Poisson).
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The simulations used 10,000 replicates on each combination of n; = 10, ng = 100, m = 2 or 4,
a =0.02, 0.1, 1, 10, or 100, and ¢ = 0, 3 or 9. In practice, we would expect values of ¢ between
0 and 3 and a > 0.1. Values outside this range were intended as severe tests—for example, when
a = 0.02, many samples of 100 will have <1 nonempty packets.

Sequential sample results were compared to those for the “corresponding” fixed samples, that
is, those whose size is the average size of the sequential sample (rounded up if the fractional part
is >0.1). This average size depends not only on the sequential sampler’s choice of m but also on
the population parameters o and c. These would not be known in practice, so a comparison of a
sequential summary and the corresponding fixed sample loads the dice in favor of the fixed sample.

Abundance. Estimation of o was essentially unbiased: The maximum bias in @) was 4.5% for
o = 0.02, and less than 1% otherwise. Fixed sample biases were slightly larger, but also negligible.

Precision of abundance estimates. Variances of abundance estimates were smaller for fixed than for
sequential samples, but most differences were small. The ratio (sequential variance)/(fixed variance)
was. < 1.1 for a > 1, except for 1.25 when @ = 1 and ¢ = 9; it was about 2 for « = 0.1 and for
a = 0.02 when m = 4; and reached 4 when o = .02 and m = 2. The standard deviation (SD) of the
sequential estimate is about a for a = 0.02 or 0.1 or for ¢ = 9, about 0.6« for ¢ = 3 and « > 0.1,
and about 0.3y/a for ¢ = 0. These values are relevant to the Taylor series expansions, which assume
small values of SD/abundance. The variance estimate, using (2.15), was negligibly biased for all
combinations.

Log(abundance). Table 2 gives the biases of the estimates of log(c), that is, the average of [estimate—
log()]. The negative bias of log(é;) is roughly an increasing function of V(é3)/a? and is non-
negligible except for ¢ = 0 and a > 1. Both adjustments have smaller biases than log(dp), except
for the Taylor series when abundance = 0.02, when it overcorrects. The bootstrap usually has a
smaller bias than the Taylor series estimate, but this improvement is rather small except when the
abundance is 0.02 or (with m = 2) 0.1. The biases for the fixed sample estimates are essentially
the same, except when m = 2 and a = 0.02 or 0.1, when they are about half the biases of the
sequential estimates.

Table 2
Biases of log(abundance) estimates for n; = 10, ng = 100
log(a)

m c -3.91 -2.30 0.00 2.30 4.61
2 0 lf)g(db) -0.33 —0.36 —0.05 —0.00 —0.00
QTS 0.92 0.20 0.00 0.00 0.00

Lp —-0.19 —0.03 0.01 —0.00 0.00

3 lf)g(&b) -0.33 -0.38 -0.22 -0.16 —0.16

Lrs 0.93 0.23 ~0.05 —0.04 ~0.04

Lp -0.18 —-0.04 —-0.03 —-0.02 -0.03

9 ng(&b) -0.36 —0.44 —0.46 -0.48 —0.50
.IIJTS 0.94 0.27 —-0.13 -0.24 -0.27
Lp —-0.22 -0.07 -0.14 -0.17 -0.15
4 0 lf)g(&b) -0.19 -0.15 —0.06 —0.00 -0.00
I:TS 0.24 0.05 -0.01 0.00 0.00
Lp -0.11 -0.00 —-0.00 0.00 0.00
3 log (@) ~0.20 —0.16 -0.18 -0.16 -0.16
Lrs 0.25 0.05 —0.04 —0.04 —0.04

Lp -0.12 0.00 —0.05 —0.03 —0.03

9 log(é,) —0.22 ~0.19 —0.28 —0.40 —0.46

{/TS 0.25 0.05 —0.05 -0.17 —-0.23

Lp -0.14 —0.01 —-0.08 -0.14 -0.15
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Precision of log(abundance) estimates. Table 3 gives the SD of the estimates of log(c). One of the
aims of the sequential samples—that the precision of the estimate of log(a) should be only weakly
dependent on « itself—is seen to be achieved, although there is a trend (smaller variances for larger
o) for the Poisson (¢ = 0) distribution. Except for the Taylor series estimates when m = 2 and
a = 0.02, the SDs are always greater than the biases, often by factors of 5 for log(ép) and of 10 for
the other estimates. The SDs are rather similar for the three estimates in most cases, but where
they do differ (a = 0.02, and a = 0.1 and 1 for m = 2), the Taylor series estimate’s SD tends to be
smallest. (The Taylor series SD’s are smaller for m = 2 than for m = 4, when « = 0.02; this is due
to sampling error: the minimum of m positive packets was frequently not reached in both cases.)
Results for fixed sample estimates are very similar: The extreme values of (fixed SD)—(sequential
SD) for the Taylor series estimates were 0.1 and —0.07; these occurred for = 1, ¢ = 9, m = 4,
and a = 10, ¢ =9, m = 4, respectively.

Table 3
SDs of log(abundance) estimates for n; = 10, ng = 100
log()

m c -3.91 —-2.30 0.00 2.30 4.61
2 0 lf)g(db) 0.73 0.82 0.34 0.10 0.03
Lrs 0.36 0.56 0.32 0.10 0.03
Lp 0.91 0.76 0.32 0.10 0.03
3 log(éy) 0.74 0.85 0.72 0.61 0.59
Lpg 0.37 0.60 0.67 0.61 0.59
Lp 0.92 0.82 0.68 0.61 0.60
9 log(&s) 0.74 0.90 1.03 1.12 1.18
Lrg 0.39 0.66 0.95 1.11 1.18
Lp 0.95 0.89 1.01 1.15 1.22
4 0 log(&p) 0.69 0.52 0.34 0.10 0.03
Lrs 0.47 0.50 0.33 0.10 0.03
Lp 0.84 0.51 0.33 0.10 0.03
3 log(ép) 0.71 0.56 0.60 0.61 0.59
Lrs 0.49 0.54 0.59 0.61 0.60
Lpg 0.88 0.55 0.60 0.62 0.60
9 log(éy) 0.72 0.60 0.76 0.96 1.09
Lrg 0.50 0.58 0.76 0.97 1.10
Lp 0.90 0.59 0.77 0.99 1.13

When Tables 2 and 3 are combined to give the root mean square error (RMSE), the bias dif-
ferences are mostly swamped by variances. The rmse is not very different for the three estimators,
but the difference tends to favor the Taylor series estimate. As for the SDs, the RMSE’s are only
weakly dependent on o except when ¢ = 0. RMSE’s are again very similar for the fixed sample
estimates.

Estimated variances of log(abundance) estimates. Nominally, the variance estimates Virs and VB
described in equations (3.2) and (3.9) are aimed at V{log(&;)}, but the performance of the Taylor
Series estimate in Table 3 makes V{ﬁTS} of interest. These target values are the squares of the
SD’s in Table 3. Vg overestimates both targets when « is small and underestimates when « is
large; its bias is below 10% when ¢ = 0 and a > 1 (except for 17% for m = 4, @ = 1) and below 35%
whenc=3,a>1orc=9, a =1, but it is otherwise over 50%, often far over. VB underestimates
V{log(&p)} in all but three cases, but its bias is always below 30% and usually below 20%. It
overestimates V{Lpg} for a < 1 and underestimates for o > 1 (except for m=2,¢=0, a =1);
the bias is less than 32% except when a = 0.02 or m =2, a = 0.1.

The SDs of these variance estimates also tend to be moderately larger than the biases. However
the Taylor series estimate shows no clear tendency to be smallest: Vg has the largest SD’s when
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o is small, but the smallest when « is large. As a result, Vg seems to do best overall, when judged
by RMSE, although the improvement is not great. Table 4 shows (RMSE)/V{Lrg}. Vp is clearly
better for o < 1, whereas the difference is negligible for o > 1.

Comments. These results suggest that the Taylor series adjustment to log(d,) gives a useful im-
provement, whereas the extra effort demanded by the bootstrap may result in an inferior estimator.
There may be exceptions to this rule. For example, biased estimation could either inflate or de-
flate an estimate of the variability of log(abundance) over time, depending on whether clumping
increases or decreases as abundance increases, so bias could play a larger role in the comparison of
populations whose clumping varies with abundance.

The Taylor series estimate can be in error either because o2 / 2022 is a poor approximation to the
bias, or because s2/2&2 is a poor estimate of it. In fact, log(é&s) +02/20? had low bias except when
o = 0.02, notably low when o and ¢ were large (even though the Taylor series justification seems
weak, with o/a = 0.5 or more). Because 02/a? is the Taylor Series approximation to V{log(és)},
I looked at log(és) + Va/2 and log(és) + V{log(és)}/2. These performed well (average squared
biases < 0.005), but this may be fortuitous, and the former’s decrease in bias may be outweighed
by the increase in variance, although I did not check this.

Table 4
RMSE/V{Lrg} for estimates of V{Lrg}, where Ltg = Taylor
series estimate of log(abundance) forn; = 10, ng = 100
log(a)

m c —3.91 —-2.30 0.00 2.30 4.61
2 0 Vrg 19.35 3.14 0.62 0.48 0.47
Vs 2.57 1.01 0.93 0.45 0.44

3 Vrs 18.20 2.90 0.56 0.50 0.50

Vs 2.46 0.82 0.52 0.67 0.70

9 Virs 16.93 2.72 0.53 0.64 0.68

Vs 2.24 0.69 0.44 0.61 0.76

4 0 Vrs 3.62 0.68 0.53 0.47 0.47
Vg 0.86 0.28 0.56 0.45 0.44

3 Vrs 3.42 0.58 0.41 0.50 0.50

Vs 0.79 0.30 0.39 0.58 0.68

9 Vrs 3.33 0.53 0.36 0.56 0.65

Vg 0.84 0.41 0.44 0.58 0.68

The bootstrap variance estimate, Vg = V{log(6p1)} performed better overall than.the Taylor
series estimate, but only because it did much better for small a. It also performed better as an
estimate of V {log(é)}, its nominal target, than as an estimate of V{Lyg}. This suggests that
“V{Lrs1},” the bootstrap estimate aimed at the Taylor series estimate of log(abundance), might
perform better still. A more elaborate possibility arises if log(ds) + Vi /2 should improve on Lpg:
A bootstrap estimate of its variance would require bootstrapping a bootstrap. The computation
required is likely to be manageable, because the sequential samples are likely to have only a few
distinct values, but simulating the performance of such an estimate may be difficult.

Bootstrapping has an additional advantage not studied here: It can be used to compute confidence
intervals without any distributional assumptions, such as Normality. This may be less important
than the point estimate for log(abundance) at a particular time, if our ultimate aim is to study
the mean or variability over time for impact or theory assessment, but could be valuable in other
cases.

Apparent dead ends. Several variations on the bootstrap methods were also tried.

By (equation (3.5)) is itself likely to be biased. Its bias is log(p) — E{log(py) | p} — E{log(ps) —
E{log(fp1) | Pb} | p}, which can also be estimated by the bootstrap, by replacing p, pp and pp;
with Py, Pp1, and Ppo respectively, where pyo is obtained by first sampling as in Section 2 from the
distribution given by p, and using (2.6) to obtain pp;, then sampling from the distribution given
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by Pp1 to obtain ppa. This estimate, Bp2, has a bias that can be estimated by B3, and so on,
giving a series of estimates of log(p). The sequence Byp1, Bpg, .. ., is easy to program. Given m, ni,
and ng, the only possible values of py, (or pp1,...) are 1/2n3,1/ng,...,(m — 1)/ng,(m — 1)/(ng —
1),...,(m = 1)/n1,m/n1,..., 1. E{log(pp1) | o}, and P{pe1 | B}, P{be2 | Do} = ) P{ps2 |
Pu1}P{Pr1 | Pv},and so on, are easy to record. I looked at the first two iterations of this sequence.
A similar iteration is possible for V {log(pp1)}: I looked at the first step of this sequence, by adding
V {log(pp1)} — E{V{log(Pv2) | Pr1}}- None of these more elaborate estimates performed better than
the simpler ones. A similar iteration is possible for B4 but requires far -more computing, so I did
not attempt it.

Two other estimates of variance were also considered. One was given by (3.9) but with
“V{log(C+1)}” multiplied by Ny /(N4 — 1) when Ny > 2, by analogy with the standard un-
biased estimate of variance where the same multiplier is used on the variance of the empirical
distribution function. The other applies the same analogy to the covariance term, using (3.8) but
with “V{log(C+1)} + 2cov{log(pp1), log(C+1)}” multiplied by N4 /(N4 — 1) for Ny > 2. Both
estimates had slightly smaller biases overall than Vg, but their SD’s and RMSEs were larger.

6. Discussion

The sequential sampling scheme described in Section 2 is easy to carry out in many cases. Its
scope is wider than may at first appear. In many practical cases, such as small animals hidden in
core samples from the sea bottom, the sampler cannot distinguish between “zero” and “positive”
packets until the samples are analyzed in the laboratory. In such cases, however, the main cost of
sampling is often in the laboratory analysis, not in the collection. Thus, one can sample the full
set of ny packets in the field, but analyze only the number needed to give the required number of
positive packets.

The estimates are easy to calculate, except for s2 in (2.15), which requires negligible comput-
ing, or can be approximated, and the bootstrap estimates, which require intensive computation
although the programming is simple. The bootstrap estimates could be avoided; the bootstrap bias
adjustment seems inferior to the Taylor series adjustment, based on RMSE, and the bootstrap
variance estimate may not be a sufficient improvement to justify the effort. On the other hand,
more elaborate bootstrap estimates using smoothing (e.g., Young 1994) might do better.

The errors are unacceptably large in some cases, but most of these involve extreme, unrepresen-
tative means or clumping. Given an abundance of 0.02 per packet, most biologists will use a larger
packet, a larger ng, or a different sampling method—or will study a different organism! Clumping of
¢ =9, implying a coefficient of variation of >300%, seems very rare. The ranges o > 0.1 and ¢ =0
to ¢ = 3, seem much more common, and most results are adequate, although less than perfect, for
this.

The assumption that the sampled "packets” are roughly equal in size is in fact not needed.
For example, the packets could be plants or branches or twigs of varying sizes. Estimation of the
mean abundance (the average number of animals per plant, per branch, or per twig) and of its log
would proceed as earlier. If the sizes of the plants, branches or twigs are recorded, the abundance
estimate can be converted into an estimated abundance per unit of area in the usual way. The only
requirement is that the sampled plants (say) be randomly sampled: In particular, there should be
no tendency to choose the larger ones. The drawback is that, although (say) number of animals
and surface area can be measured on each plant, only the number can be used in the abundance
estimate: For example, one could not adjust the estimate if the area measurements indicated that,
despite the randomization used, the sampled plants were in fact larger than average. Such an
adjustment would improve the method, but it requires a model specifying the mean and variance
of the numbers of animals on a plant as functions of its size.

Much of the concern here has been with the development of unbiased estimates. There are
objections to the use of unbiasedness as a guiding principle. It can lead to unappealing (and
inadmissible) estimates—for example, negative estimates of variance components. It involves an
average over the sample space, so it depends on what was not observed (but could have been),
as well as on what was observed. In sequential sampling, the unobserved possibilities depend on
the sampler’s intentions—for example, our formulae give different results for the same sample,
depending on the values of m, n1, and ny. Thus, our estimate depends not only on what nature
tells us, but also on what was in the sampler’s mind, which seems irrelevant.

However, unbiasedness makes better sense when a sampling plan is likely to be repeated many
times, by one or more investigators (Anscombe 1963). This seems likely for impact assessment
schemes, measures of temporal variation, and other uses of log(c).
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Second, for small m (which seems the best choice), the initial sample of n; will usually yield
the required m positive twigs, unless positive twigs are rare (in which case all the estimates are
biased). In these cases, &y, is just C., the average number per packet, and the variance estimator,
2, is fairly well approximated by (sample variance)/ni: the difference seems to be < 5%, usually.
Neither C. nor the sample variance depends on m or ng, and they depend on n; only because this
was the actual sample size, not because of the sampler’s intentions.

Third, the Taylor series estimate seems to reduce both bias and variance (see Table 3), so other
criteria (e.g., Bayesian expected squared error) may also favor this estimator.

A final comment is that methods similar to those used here could be used for estimating other
functions of abundance defined only for positive values—for example, habitat quality may some-
times be best indicated by the reciprocal of abundance, that is, the amount of habitat needed to
support one individual.
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RESUME

Je traite de ’estimation de I’abondance d’une population biologique, les logarithmes et les variances
de ces estimations, & partir d’un schéma d’échantillonnage séquentiel avec des tailles minimum et
maximum. Les observations sont les dénombrements d’organismes dans des “paquets” tirés au sort
tels que des carottes, des branches, des buissons, .... Des échantillons sont constitués pour des
valeurs pré-définies de m, n1 et na jusqu’a (a) au moins nj paquets et (b) soit m paquets positifs
ou mo paquets observés.

Les estimations d’abondance sont basées sur une estimation de la fraction de paquets positifs,
donnée par Kremers (1987, Technometrics 29, 102-112), modifiée afin d’éviter les estimations de
zéro. Les estimations du log de I’abondance sont données par Log (abondance estimée) avec une
correction du biais di & la concavité de la fonction Log. Deux ajustements sont considérés, 'un
basé sur un dévéloppement en série de Taylor (la ‘delta method’) et I'autre sur le bootstrap. Ces
techniques sont aussi utilisées pour estimer la variance de ’estimateur de la Log (Abondance).
Des simulations suggerent que les deux methodes sont préférables & ne pas ajuster, bien que le
gain soit faible comparé & I’estimation de ’écart-type standard. Les estimations bootstrap sont
moins biaisées que les estimations des séries de Taylor, mais elles sont de plus grandes variances,
de sorte que les estimations de séries de Taylor ont des carrés moyens plus petits. Les variances
des estimations séquentielles de la Log (Abondance) ont tendance a étre seulement légérement
dépendantes de I’abondance vraie.
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Abstract. We compare two approaches to designing and analyzing monitoring studies
to assess chronic. local environmental impacts. Intervention Analysis (IA) compares Before
and After time series at an Impact site; a special case is Before—After, Control-Impact
(BACI), using comparison sites as covariates to reduce extraneous variance and serial
correlation. IVRS (impact vs. reference sites) compares Impact and Control sites with
respect to Before—After change, treating the sites as experimental units. The IVRS estimate
of an ‘‘effect’ is the same as that of the simplest BACI (though not of others), but IVRS
estimates error variance by variation among sites, while IA and BACI estimate it by variation
over time.

These approaches differ in goals, design, and models of the role of chance in determining
the data. In IA and BACI, the goal is to determine change at the specific Impact site, so
no Controls are needed. IA does not have controls and BACI’s are not experimental controls,
but covariates, deliberately chosen to be correlated with the Impact site. The goal given
for IVRS is to compare hypothetical Impact and Control ““populations,” so the Controls
are essential and are randomly chosen, perhaps with restrictions to make them independent
of each other and (presumably) of Impact. IA and BACI inferences are model based:
uncertainty arises from sampling error and natural temporal processes causing variation in
the variable of concern (e.g., a species’ abundance); these processes are modeled as the
results of repeatable chance setups. IVRS inferences are design based: uncertainty arises
from variation among sites, as well as the other two sources, and is modeled by the assumed
random selection of Impact and Control sites, like the drawing of equiprobable numbers
from a hat.

We outline the formal analyses, showing that IVRS is simpler, and BACI more complex,
than usually supposed. We then describe the principles and assumptions of IA and BACI,
defining an *‘effect” as the difference between what happened after the impact and what
would have happened without it, and stressing the need to justify chance models as rea-
sonable representations of human uncertainty. We respond to comments on BACI, some of
which arise from misunderstanding of these principles.

IVRS’s design-based justification is almost always invalid in real assessments: the Im-
pact site is not chosen randomly. We show that “‘as if random” selection by “Nature” is
untenable and that an approximation to this, while a possibly useful guide, cannot be used
for inference. We argue that, without literal random assignment of treatments to sites, [VRS
can only be model based. Its design and analyses will then be different, using and allowing
for correlation between sites. It is likely to have low power and requires strong assumptions
that are difficult to check, so should be used only when IA or BACI cannot be used, e.g.,
when there are no Before data.

Key words:  autocorrelation; BACI (Before-After, Control-Impact) design; environmental deci-
sion making; environmental impacts, assessing; inference, design-based cf. model-based; intervention
analysis (IA); impact vs. reference sites (IVRS); models and model uncertainty; statistical analysis;
stochastic process variance and sources.

INTRODUCTION teration of the environment as part of the input to a
decision-making process.

Examples include construction or further develop-
ment of oil platforms, power plants, sewage outfalls,
jetties, breakwaters, and other projects, and land-use .
changes like opening an area to recreation. In each case,
the alteration is planned in advance, so there is time

Manuscript received 28 October 1999; revised 19 November to gather data before it is in place. It will remain in

1999; accepted 10 February 2000; final version received 10 April ~ Place long enough to be regarded as a fixed component
2000. of a changed environment. At least some of the ex-

3 E-mail: stewart@lifesci.ucsb.edu pected effects will be local, i.e., there will be sites near

305

As the human population and its demands on re-
sources continue to grow, so do concerns about its im-
pact on the environment and on populations of other
organisms. This paper concerns one aspect of this prob-
lem: assessing chronic local effects of a planned al-
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TABLE 1. Frequently used terms, acronyms, notation, and TaBLE 1. Continued.

variables.

= Terms, notation Definitions

TR Baict Deflaiinns P Period of an observation. It can be
Basic concepts and acronyms+ either “B"" (= Before) or ““A”

A After ’ (= After). .

After period Time from the first sample following Sq” 2, (dex — dc)(Ne — 1). Sample vari-

the completion of the alteration to
the last sample of the study. *Com-
pletion™ is the end of the effects of
construction, as distinct from the
more permanent effects of the alter-
ation.

AR Autoregressive. AR(k) = kth-order au-
toregressive error model of the form
)™= pelt — 1)t o pelt —
k) + a(r), where the a(r)’s are inde-
pendent.

Autoregressive moving average.
ARMA(k, g) = error model of the
AR(k) form, but with the a(r)’s fol-
lowing the MA(g) error model, rath-

= er than being independent.

B Before

BACI Before-After, Control-Impact

Before period Time from the first sample of the

study to the last sample taken be-
fore the alteration of the environ-
ment begins (e.g., the beginning of

ARMA

> construction)
C Control
1A Intervention analysis

Interim period Time between the last Before sample
and the first After sample

Impact vs. reference sites

Moving average. MA(g) = gth-order
moving-average error model of the
form n(t) = b(1) + o b(t — 1) + ...
+ a,b(t — gq), where the b(1)’s are
independent.

Either the Before or the After period.
“Before period,” **After period,”
“period P,"’ and upper case in ‘‘Be-
fore,”” “*After,” or “‘Period,” always
indicate these definitions.

Average over the missing subscript

IVRS
MA

Period

. [subscript “dot™’]

Variables

Ap(2) Censused abundance (the “‘true”
abundance we would observe :f we
could conduct a census) at the Im-
pact site at time ¢ in period P

CalorCy) Estimated abundance at the Control
site (or kth Control site) at the ith
sampling time in period P

d, (or dgy) I,, — Ly, (or Cp. — Cys.). Difference

between the average (over time) Af-
ter abundance and the average Be-
fore abundance at the Impact (or kth
Control) site. These are differences
between Periods at a particular site
or group of sites.

Dy, Ip; — Cy; or (with multiple Controls),
Ip; — C.p;, the Impact—Control differ-
ence at the ith sampling time in pe-
riod P. These are differences be-
tween Impact and Control sites at a
particular time.

Iy Estimated abundance at the Impact
site at the ith sampling time in peri-
od P

N¢ Number of “Control’ (covariate or

reference) sites

ance of the After-Before differences
at the Control sites; a variance over

space.
sp? ZP.E,(DP,» — Dp)¥(2T, — 2), the pool-

ing of spg? and sp,? (see spp2 below)
Spp> Sample variance of Impact-Control

differences over times within period
P [e.g., Spg? = 2(Dg, — Dp.)}(Tg —
1)]: a variance over time

52 2p2(Iy; — I,)/(ZTp — 2), the pooling
of s3> and 5,2 (see s> below)
Sp? Sample variance over time at Impact

in period P [e.g., 552 = (I, —
LTy — 1)]

to; ith sampling time in period P

ty Time horizon: the BACI analyses are
aimed at the “‘effect” of the alter-
ation between time 75 and time 7.

ts ; Starting time of the alteration: begin-
ning of the After period. All ¢,; are
> 1

T, Number of sampling times in period P

T Examples: C,g; = the observation for the ith time at the
kth Control site in the Before period. C,p; = the observation
for the ith time at the kth Control site in period P. C,,. =
X .Ca/(number of observation times, i, in the After period)
= average value at the kth Control site in the After period.
C..i = 2,Cia/(number of Control sites, k) = average value
of the Control sites for the ith time in the After period.

enough to the alteration site to experience similar large-
scale natural fluctuations in seasons, weather, current
movements, etc., but distant enough to be little affected
by the alteration.

One reason for assessing such effects is to make
decisions about the alteration: to close it down, modify
its design or operation, require mitigation or compen-
sation, allow further expansion, or collect further data.
A second is to add to a body of information about the
likely effects of alterations of this kind. This paper
stresses the first, though much of it applies to the sec-
ond as well.

We discuss methods for assessing alteration effects
at an “Impact” site, near the alteration. This site may
be defined naturally in some cases, as a bay or estuary,
but rather arbitrarily in others, as a region surrounding
the alteration. Table 1 contains symbols and acronyms
used throughout the paper.

Our main purpose is to contrast two approaches. The
first, Intervention Analysis (IA), consists of models and
methods to compare the values of an Impact site time
series observed Before the alteration to the values ob-
served After it. It was introduced by Box and Tiao
(1965, 1975) to assess the effects of changes (new laws
and a new freeway) on Los Angeles air-pollution levels.
Before-After, Control-Impact (BACI) analysis is In-
tervention Analysis using covariate sites. Impact site
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TasLE 2. Basic BACI and IVRS: Same data, different inferences.
Data:
Before After Difference

Site T times Average T, times Average of averages
Impact, I VAR e Iy, | Rl i 1x dy =1, — Iy
Control 1, C, Cinie Cipar o Cie. Ciats Chans oo G dey = Cia. — Cip.
Control 2, C, Canrs Capasisioce Cop. AL Gk - Caa. dey; = Cyp. — Cap.
(N¢ Controls) (etc.) e O e (etc.) S A Sy e
Averages Can Croys Cs. [EBERY SN G de.
Differencest DovDese =i Dg. Dz Diai -+ D,. D,. — Dg,

Same as e = Coiiil = Coni o I — . e s 1=, di — do.

T Differences between the Impact and the Averages. The line below (*‘same as’’) gives equivalent expressions. (The separate

Controls are just an intermediate step in BACI.)

Inferences:
BACI compares Before sample Dg,, Dg,,

... to After sample D,,, D,,, . .: .

IVRS compares Impact sample d; (one value) to Control sample d¢), des, - - . -

Effect estimates are the same: D,, — Dg. = dy — dc. = I,. — C,p. — Iy, + Ca..

Variance estimates and degrees of freedom are different:

BACI: Base estimate on variation among the Dy,’s and among the D,/’s.

IVRS: Base estimate on variation among the d¢,’s.
Precautions are different:

BACI: Check serial correlation and patterns in Dg,, Dg,, . .

e andiniDy, Dy, ...

IVRS: Usually none. In one presentation: check whether Before and After variances are equal.

Responses to checking are different:

BACI: Serial correlation: allow for it using time-series methods. Patterns: use regression of Impact vs. Controls instead
of differences. Patterns in D,,’s: alteration effect might vary with conditions.
IVRS: Unequal Before and After variances: no inference for effects on the-mean.

observations are matched by roughly simultaneous ob-
servations on one or more ‘“‘Control” sites, expected
to be unaffected by the alteration. These are used to
account for some of the temporal variation. In the sim-
plest version (Table 2, Table 3: item 2(a)), the data for
each time are reduced to Difference = (Impact value
— average of Control values); the Before and After sets
of Differences are compared, e.g., by a ¢ test or interval.
It has been proposed in various forms, e.g., by Camp-
bell and Stanley (1966), Eberhardt (1976), Green
(1979), Mathur et al. (1980), Skalski and McKenzie
(1982), and Stewart-Oaten et al. (1986). We use the
“BACI” acronym because it is familiar, but it omits
the time-series aspect, and ‘“‘Control” is potentially
misleading. The unaffected sites ‘‘control” (reduce)
extraneous variation (cf. Harvey 1989) but, unlike ex-
perimental controls, are not used to measure it.

The second approach is due mainly to Underwood
(1992, 1993, 1994, 1996), but endorsed by several oth-
ers (e.g., Green 1993, Otway 1995, Otway et al. 1996aq,
b, Glasby 1997, Garrabou et al. 1998, Roberts et al.
1998). We call it “impact vs. reference sites”” (IVRS).
It also uses Impact and unaffected sites from both Be-
fore and After the alteration. Its estimate of the alter-
ation’s ‘“‘effect” is the same as that of the simplest
BACI (Table 2), but it gives a very different estimate
of the error for this effect estimate: rather than using
variation of difference over time, it uses variation of
(average After abundance — average Before abun-
dance) over the Control sites. This estimate, and in-
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ferences using it, are based on assumed random site
selection, possibly restricted to avoid dependence be-
tween sites.

This approach requires many reference sites, so may
be expensive. Underwood (1992:175) claims the ex-
pense is needed, since BACI'’s “‘lack of replicated con-
trol sites provides insufficient evidence’ and “‘no log-
ical or rational reason” for concluding that an impact
was due to the alteration. It ““would not be accepted
in normal and routine ecological and experimental
analysis’” and ‘“‘would always be rejected by reputable
journals” (Underwood 1992:175). IVRS methods ‘‘are
demonstrably superior in logic and for interpretation,”
“will provide better evidence of causal links”” (Un-
derwood 1992:173 and 176) and (Underwood 1994:
155, 155, and 152 and 154) can address problems BACI
cannot, such as an alteration effect of unknown spatial
extent, inability to sample sites simultaneously, and
‘“‘spatial and temporal interactions’ in abundances.

This paper demonstrates the opposite. BACI pro-
ceeds from natural definitions of an alteration-induced
“effect”” and of ‘‘uncertainty’ to an interpretable set
of results. It is more general than is usually realized.
Most of its alleged weaknesses stem from misunder-
standing of its goal and of the sources of error in its
effect estimates. Other weaknesses exist only for the
most parsimonious model, which is not always plau-
sible but can be extended. As presented, IVRS depends
on ‘“‘random site’” assumptions, which we show to be
untenable. However, we give a model-based justifica-
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TaBLE 3. Outline of analysis methods discussed in this pa-
per.

Intervention analysis and BACI
Group 1. Intervention Analysis, IA
Data: one value at Impact for each of 7T Before times
and T, After times

a) Compare Before and After means, assuming indepen-
dent errors :

b) Same as (a), but allow for correlated errors, seasonal
variation, and covariates

Group 2. Before—After-Control-Impact, BACI

Data: Like IA, but one value at Impact and at each of N
Controls at each time

a) Like 1(a) or 1(b), but use /—C differences instead of
I values (See Table 2.)

b) Like 1(a) or 1(b), but use C (or average of C’s) as
covariate

¢) Like 2(b), but multiple regression, using controls, other
covariates; nonlinear models

d) Gradient extension: several impact sites, effect = func-
tion of distance from alteration

ANOVA-based analyses
Data: Same as Group 2, except for 3(c), 5(b) and 6(d)

Group 3. Impact vs. reference sites (IVRS)

a) Compare single Impact value to sample of Control
values (See Table 2.)

b) Use of 3(a) at 2 levels to gauge unknown extent of
effect

c) All sites potentially affected: compare variance of B
— A differences among sites to pooled Time X Site
interaction from within Before and After periods

d) Repeated-measures ANOVA, comparing Impact to
sample of Control sites

Group 4. Changes in mean using residual variation for
error
a) r approach comparing B—A difference at Impact vs. a
sample of Control sites
b) Use of 4(a) at two levels, as in 3(b)

Group 5. Changes in mean using temporal variation for
error
a) Equal variance version of 1(a) or 2(a)
b) r approach when sampling times not matched between
sites

Group 6. Changes in temporal variance (see Appendix)

a) F test comparing Before and After temporal variation
(with or without Controls)

b) F test comparing temporal variation to sampling error

¢) Variance tests at two effect levels as in 3(b) and 4(b)

d) NV sites, all potentially affected; F test cn Time X
Location interaction

e) Multiple use of 6(a), 6(b) when times within period
(Before or After) are unevenly spaced and divided into
subperiods ;

tion for an IVRS approach with a different design and
analysis than Underwood’s. It has stronger assumptions
and less verification, flexibility, and power than BACI,
but is important because it may be the only option when
there are no Before data.

We also describe and briefly review three other ap-
proaches. One uses sampling error to estimate the error
in the effect estimate. A second uses temporal varia-
tion, like IA and BACI, but uses multiple sites without
matching the sampling times. The third targets change
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in variance rather than mean. None of these is valid
except under implausible assumptions.

We outline the analyses in the next section. In the
third section we derive the IA and BACI models from
first principles, discussing appropriate aims and the in-
terpretation of ‘“‘chance” in models of processes with
unpredictable temporal or spatial components. The
fourth section reviews alleged weaknesses of this ap-
proach, and some of the claimed improvements. The
fifth section addresses the “‘random sites’ justification
for the IVRS approach, and discusses a model-based
justification, comparing it with IA and BACI. The Dis-
cussion draws some lessons. z

ANALYSES

This section outlines five Groups of analyses. To fix
ideas, we assume that the data consist of estimated
abundances (e.g., from core samples, diver counts, net
hauls, etc.) taken at a set of times Before the alteration
and at another set After it, at the Impact site and at a
set of sites called ““Controls,” which are believed un-
likely to be affected by the alteration. Frequently used
symbols are in Table 1.

The first two Groups, Intervention analysis (IA) and
BACI, compare the Before alteration part of a time
series of Impact site values to the After alteration part.
The other Groups were all proposed as ANOVA-based
analyses by Underwood (1991, 1992, 1993, 1994).
Group 3, Impact vs. reference sites (IVRS), compares
a summary of the Impact site time series with the cor-
responding summaries at a set of reference sites.
Groups 4 and 5 compare the Before and After time
series using sampling error (4) or temporal variation
(5) as the error term. Tables 3 and 4 outline/summarize
the analyses.

The main contrast in this paper is between the time-
series approaches (IA and BACI) and the spatial ap-
proach (IVRS, especially Group 3(a) analysis below).
Table 2 illustrates how this draws different inferences
than the simplest BACI analysis, Group 2(a), from the
same data.

The analyses for IA and BACI are incomplete be-
cause these approaches are open ended: they cope with
serial correlation, covariates, and non-additivity by in-
cluding them in explicit models, of which there are too
many to list. Those for the other Groups are more com-
plete, but sources and some details are in the Appendix.

Throughout this section, “‘z test” stands for *‘z test
or ¢t confidence interval.”” We prefer the latter since
tests are rarely useful in environmental decision mak-
ing (Stewart-Oaten 1996b).

Intervention analysis and BACI

These analyses estimate mean abundance (and re-
lated quantities) at the Impact site from the Before data,
{13}, and again from the After data, {1,}; the ‘‘effect”
is estimated by comparing the two estimates. Error aris-
es from sampling error and natural temporal variation.
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TABLE 4. Formulas for 7 tests and confidence intervals.

Analysist  Estimate (SE)? df

1(a) e s2(Spl/Tp) >

1(a)t same DSt T CeV)2/ eV (Te — 1)]
2(a) SvDy = Dy, SpX(Zpl/Tp) 2T, — 2

2(a)i same EoSoedl Lo CeVor) 2V (Te — 1)]
3(a) d, — de s&(1 + 1/NQ) Ne—1

4(a) dy—dg sp2(Zpl/Te)(1 + 1/NQ/r Calp)@+ N — 1)
5(b) dy — d¢ Ss(2g2pl/Tsp) Sl — 4

5(b)§ d, — dec S (CsZpl/Top) S SAPLE ON-

Notes: In each case, the confidence interval is Estimate = 7,SE and the test compares (Estimate
— Hypothesized effect)/sE with 7., where 7 is the value corresponding to the desired confidence
or test level from the ¢ table with df degrees of freedom. Symbols are defined below or in
Table 1. New symbols (not in Table 1) are as follows:

Cp; = jth replicate observation at kth Control at time i during period P (= B or A),
Ip; = jth replicate observation at Impact at time i during period P (= B or A),
r = number of observations taken at a given site at a given time (assumed to be the same

for all sites and times),

Sg2 = [ZPEIZJ'(IPU = L)+ EkEPEIE/(CH’U = Cpi)? ]/ CpTp)(1 + No)(r — 1),
ssi2 = [Zp2ildp — Ip)? + ZpZ(Crp; — Cip.)*1/(2s2pTsp — 4); one control,

Ssm? = 2, 2p2((Copr — Cip)/(EETp —

2Nc); multiple controls,

Tsp = number of times site S (Impact or a Control) was observed in period P,
T, = number of times kth Control site was observed in period P,
Vie = sp¥/Tp; also Vpp = 554/ Tp (Snedecor and Cochran 1989: Eq. 6.11.1) (V = variance).

T See Table 3 groups.

i Approximate version, not assuming equal variances.
§ Multiple Control sites. Variance estimate does not use Impact observations.

The main complication is due to the need to model,
estimate, and possibly reduce serial correlation in the
temporal variation.

Group 1. Intervention analysis. IA.—The key ref-
erence is Box and Tiao (1975). Others include Box and
Tiao (1965), Glass et al. (1975), Tiao et al. (1975),
McDowall et al. (1980) and Harvey (1989). The ob-
servations are the Before and After abundance samples,
(lap =02 = Salabrande bl =132 v Rl
Beginning with the simplest, the analysis options in-
clude:

a) A t test comparing the Before and After samples,
based on the model Ip; = pp + &p, Where pp is the
mean in period P, p, — pg is the effect, and the &p,; are
independent ‘“‘chance’ errors.

b) Samples taken over time may be temporally cor-
related. If so, the confidence intervals in (a) will be
too short and the tests too likely to reject the null hy-
pothesis. Box and Tiao (1975) modify 1(a) to allow for
autocorrelated errors. Their error models include AR (k)
(see Table 1) and non-stationary seasonal models. If
random ‘‘shocks’ (e.g., the ap;’s for the AR(k) process)
are assumed Normal (Gaussian) (or some other known
form), an estimate, confidence interval, or test for w,
— pg can be obtained by maximum likelihood.

c¢) The models in 1(a) and 1(b) assume a constant
within-period mean, pp. They can be expanded to allow
for deterministic seasonal variation, e.g., Ip; = pp +
Npsin(mtp; + bp) + €p; (Where 1, is time in years of the
“Pi”” observation and the “‘effect’” can be the change
in w, \, ¢, or a mixture), or for other covariate obser-
vations, such as temperature or rainfall.

d) All these models can also be applied to transfor-
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mations of Iy, such as In(Zp), \/1_p,~, or 1/I,, possibly
with adjustments to avoid problems of zeros. Inference
can be by exact or approximate maximum likelihood,
by methods based on robust estimators, or by non-
parametric methods in some cases. (This is not to say
these methods are easy to apply, merely that they are
available.) .

Group 2. Before-After, Control-Impact (BACI).—
The covariates in intervention analysis, Group 1(c)
above, can be any observations expected to improve
precision, e.g., measurements of physical or chemical
conditions, or abundance estimates for other sites or
species. BACI is intervention analysis using abun-
dances of the same species at comparison sites as cov-
ariates. These may plausibly satisfy simpler models,
but are not otherwise special. We describe them sep-
arately for historical reasons and to clarify the differ-
ences with the IVRS approach. References include Ma-
thur et al. (1980), Stewart-Oaten et al. (1986), Stewart-
Oaten et al. (1992), Bence et al. (1996) and Stewart-
Oaten (1996a). The analysis options include:

a) Use of a 7 test comparing the Before and After
samples of Impact—Control differences, {Dg: i = 1, 2,
ceey Tptandi{Di=1, 2, .., T,}. Thisis the same
as Group 1(a), but uses differences (D) instead of Im-
pact site abundances (/). If there are multiple Controls,
the Control component of the differences can be their
average (or other summary), Cp. The extensions in
Group 1(b) and (c) can also be applied to the differ-
ences. However transformations seem more usefully
applied to the original abundances (thus Dp; might be
In(Zp;) — In(Cy) or Ip/(Ip; + Cy;)) than to the differences.

b) Use of a ¢ test based on the covariate model I, =
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mp + BpCp + &5 (P = B or A). “Cp;”’ .could be the
average of multiple Control sites. The “‘effect’” can be
on the intercept (e.g., po — W), the slope (B — Bs),
or taken to be the change at a particular value of the
Control site, representing ‘‘standard’ conditions: p, +
B.C — (g + BgC). Unequal Before and After variances
can be dealt with—easily if w and B can both be af-
fected (each regression can be fitted separately and the
results combined), less easily otherwise. These anal-
yses can also be extended to allow the errors to be
serially correlated. *“/”’ and ““C”’ can represent trans-
formations of the raw abundance estimates.

c¢) The model in 2(b) can be extended to include
explicit multiple Controls (rather than a single aver-
age), other covariates, and nonlinear models. Control
sites could be separate covariates or combined into
groups (e.g., North (sites north of the Impact site) and
South), using the average of each group as a covariate.
Other covariates (like temperature) could be included
and autocorrelated errors allowed for. The main vari-
ables (Ip,), the Control values (Cp; or C,p;), and other
covariates could also be transformed. These methods
are also not easy: we briefly discuss model choice,
checking, and robustness later (see Intervention anal-
vsis and BACI: BACI using comparison sites and cov-
ariates. .. : Errors in variables and Feasibility and
model uncertainty, below).

d) “*Gradient™ extensions of IA and BACI could use
several Impact sites, and model the effect at a site as
a function of its distance from the alteration. This in-
volves difficult modeling problems, to specify relations
between Impact and Control sites or between effect and
distance, and for spatial and temporal correlation. Ellis
and Schneider (1997) describe a version. Wiens and
Parker (1995) discuss it for ““After only” data.

ANOVA-based analyses

These analyses usually estimate the “‘effect’” by I,.
— TIs. — [Cai = Cxl- This equals both»D, = D, the
difference between the average After and Before dif-
ferences as in the simple BACI model 2(a), and d;, —
dc., the difference between the After—Before change
at Impact and the average After—Before change at the
Controls (see Table 2). They differ in the error they
attach to this estimate (see Table 4).

Group 3 uses variation among the Controls, which
can arise from spatial variation, temporal variation that
differs among sites, and sampling error. Group 4 uses
sampling error. Group 5 uses variation over time, which
includes sampling error. Group 5(a) analysis is a simple
BACI; the rest of Groups 4 and 5 are valid only under
implausible models. We present them, comment briefly,
then ignore them. We defer a sixth Group, targeting a
change in temporal variance rather than mean, to the
Response section, below, and the Appendix.

The main references are Underwood (1991, 1992,
1993, 1994) (1996 reprints 1994). His ‘“‘asymmetric
ANOVA” tables usually give only the “Source’ and
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degrees of freedom (**df”’), omit models and formulae
(the **ss’” and ““Ms” columns), and contain ambiguities
and seeming errors. However, their F tests for means
are simple ¢ tests, and this form clarifies their moti-
vation and assumptions. The Appendix gives sources,
more details, and outlines proof that our descriptions
are equivalent to Underwood’s.

Group 3. Impact vs. reference sites (IVRS), using
spatial variation for error.—

a) Use of a ¢ test comparing the Impact “‘sample,”
the single value d,, to the Control sample, {dc,, dc,,
il

b) Use of 3(a) at two levels, for when the effect’s
extent is unknown. For example, there may be an Im-
pact site and several Control sites in a bay, to test an
alteration there. If the test in 3(a) is not significant,
these sites are combined (averaged), and the test in 3(a)
used to compare this “Impact bay” with a set of Con-
trol bays.

c) If all the sampled sites are potentially affected
because the effect’s extent is unknown: use of an F test
comparing the variance among sites of the Af-
ter—Before differences to the pooled Time X Site in-
teraction mean square (MS) from within the Before and
After periods. The motivation may be that an alteration
effect will change the sites by different amounts, so
the variance of the After—Before differences will be
greater than expected from natural variation within pe-
riods.

d) Use of repeated-measures ANOVA as a method
for analyzing ‘‘longitudinal data,”” where each unit
(site) has been measured on several occasions, without
collapsing the data to a single value per site as in 3(a).
The particular analysis depends on the model for the
mean, e.g., how it allows for natural differences be-
tween Impact and the Control sites, temporal variation
in the alteration effect, and autocorrelated errors.

Group 4. ANOVA, using residual variation for er-
ror.—a) Use of a ¢ test like Group 3(a) except that the
variance of the effect estimate, d; — d., is estimated
by the pooled sampling variances from each site visit,
rather than by the variation among dc,, dey, . ... In
some cases this test is done only when the ‘“‘between
vs. within™ sites comparison is not significant.

(b) Use of the ¢ test in 4(a) twice, once at each of

- two levels of possible effect, in the same way as 3(a)

is used twice in 3(b).

Comments. This group assumes that actual abun-
dances at the sites (the values a census would give)
fluctuate in perfect unison over time. This is not plau-
sible, even as an approximation, nor is made so by a
nonsignificant preliminary test. Most statistical anal-
yses are approximations: low-degree polynomial re-
gressions, and time-series models with low-order au-
tocorrelations, are justified by tests or plots showing
adequacy rather than absolute truth. But these approx-
imations are plausible, and often can predict future val-
ues better than more complicated models. They are
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preferred for interpretability and tractability, not for
greater nominal precision. Using the residual variance
in assessment replaces tractable and interpretable mod-
els that may be nearly right by a model known to be
wrong. If it gives a smaller P value or shorter confi-
dence interval, then we know that we are claiming more
precision than is justified; if it doesn’t, it has no point.

Group 5. ANOVA, using temporal variation for
error.—

a) Use of the standard (equal variances) version of
the ¢ test of Group 1(a) or Group 2(a).

(b) Use of a t confidence interval or r test when
sampling times differ between sites (see Table 4).

Comments. Analysis in Group 5(a) is a special case
of Group 1(a) or Group 2(a) analyses.

Underwood (1992:160) claims that analysis in Group
5(b) is ‘‘a considerable advance on attempting to an-
alyze the data using 7 tests.”” It is a ¢ test, whose test
statistic can be written as (estimated effect)/(1SE of
estimate), and this form clarifies its assumptions: that
observations from different sites are independent and
that observations from the same site at different times
are independent with the same mean and variance. If
these were true, the method of Group 1(a) (the naive
IA) would be easier and better: the Controls would
contribute only random error and extra assumptions.
They provide ““control’” only under an unlikely model:
a natural change near the start-up time affects all later
observations at all sites by the same non-negligible
amount, while deviations at all other times are uncor-
related between sites and between times. Correlation
between values taken over time is the main concern in
IA, and a main reason for BACI's comparison sites.
(Reducing temporal variance is the other.) The analysis
in Group 5(b) wishes away the main problems ad-
dressed by IA and BACIL

INTERVENTION ANALYSIS AND BACI

This section describes Intervention Analysis (IA)
and Before—After, Control—lmpact (BACI). [A is a way
to use samples taken at an Impact site at several times
Before and After an “‘intervention’ to determine its
effect on some variable at that site. A major problem
in using IA to assess effects on biological variables
like abundance is high uncertainty (or low power) due
to natural variation and serial correlation. Such prob-
lems are often reduced by using covariates. BACI is
IA with the Impact site data matched by data from one
or more comparison sites to control for some of the
natural variation.

We focus on concepts rather than mathematics for
substantive reasons as well as readability. Inappropriate
use of probability concepts cause some of the errors
we will later see in the IVRS (impact vs. reference
sites) approach. The relation of models to reality, the
definitions of quantities of interest, and the meaning of
chance and uncertainty require more attention as sta-
tistical applications widen into areas where uncertainty
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arises from sources other than sampling and measure-
ment error (e.g., Chatfield 1995, Draper 1995, Buck-
land et al. 1997, Mallows 1998). Most time series and
spatial data sets are of this type.

Assessments are largely time-series problems. The
target quantities and the “‘chances’ appearing in con-
fidences, P values, and other measures, may be more
than purely social constructs, but are not objective
physical quantities that can be taken for granted. The
validity of assessment methods rests in part on their
aims and definitions being acceptable to “‘reasonable”
non-scientists, not only because final decisions will of-
ten be made by non-scientists but also because the
methods use concepts like “‘chance,” “‘mean,” etc.,
which describe human states of mind as well as the
physical world. .

We assume here that the assessment tasks are (1) to
describe the effect of the alteration on the abundance
of a given species at the Impact site and (2) to measure
the reliability (or uncertainty) of this description. Both
tasks involve definition that is not as simple as may
appear.

IA. Problem statement 1: defining an “‘effect’”’

What is an effect?—We define the effect of concern
to be the difference between the abundance at the Im-
pact site after the alteration and the abundance the site
would have had if the alteration had not occurred. This
natural definition of a treatment effect is widely ac-
cepted (e.g., Rubin 1974, Rosenbaum 1984 and 1987,
Holland 1986, Cox 1992, Freedman 1994).

Censused abundance and temporal variation.—We
define a site’s censused abundance to be the actual
number of individuals at the site (or the number per
unit area or volume). It differs from the observed abun-
dance, which is affected by sampling error. Observed
abundances are expected to vary over time, but this is
due to both sampling error and temporal variation in
censused abundances stemming from a variety of
sources (Table 5). :

Thus the “effect’” is the difference between two
functions of time:

AL(1), Ag(?) = the censused abundances at time ¢,
under ‘“‘alteration’” (After) and ‘“‘no
alteration” (Before) conditions. ()

The omniscient investigator would provide the decision
maker with both functions or with a suitable description
of the difference, such as A,(r) — Ag(r) or A, (1)/Ag(D),
for all values of ¢ following the alteration. Of course,
only one of these functions can exist at any time and
we cannot observe future values of either.

Not all of this information would be used, even if
we had it. A manager would base decisions on only a
limited range of times. This would usually extend be-
yond the study period, but not to very large values of
t—e.g., the lifetime of the alteration might be used, or
the first 100 yr after its installation. The shorter horizon
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TaBLE 5. Temporal variation in censused abundances: sources and examples.
Type of Source of variation
variation Environmental examples Biological examples
Trends 1) sedimentation, erosion 2) evolution, succession
Cycles 3) days, seasons, ENSO7¥ 4) intra-species, closely linked species:
Irregular 5) storms, upwellings, runoff,  6) epidemics, invasions, other migrations,

spells (dry. hot, windy, ...)
Interactions

births, deaths, encounters

7) Storms, upwellings, or inva-

sions during an annual
recruitment period

Note: The examples of sources of variation are numbered for ease of reference.

1 El Nifo/Southern Oscillation.

+ Parasitoids, pathogens, specialist prédators, essential resources, competitors.

makes prediction easier, since geological changes can
be ignored.

Even over this range, the full sets of function values
would not be used—e.g., small or short-lived fluctua-
tions would rarely be of interest. Instead, a few sum-
maries would be calculated, for comparison with sim-
ilar summaries of alteration effects on other species
and on non-biological variables (e.g., economic).
Among these might be the mean (calculated overall, or
for particular seasons, or for conditions like El Nifio
or northerly currents), the times to local extinction and
subsequent recovery, and measures of change in the
amplitude or frequency of fluctuations.

Prediction tasks.—Our targets are the functions A ()
and Ag(?) from startup or installation of the alteration
to the end of the time horizon or period of interest (zg
< t < ty) (see Table 1). Instead of observing these
functions exactly and continuousiy, we observe them
with error as Iy, (Before) and I,; (After) for a set of
times before (fg;: ty, < 15y < ... < fgg, < ts5) and after
(tair ts < tay < tay < ... < tar,) the alteration. There-
fore, we need to predict the values of these functions
(or summaries of these values) from these data.

In this paper we treat the prediction period as being
long relative to the sampling period for the After data,
so that virtually the entire assessment problem concerns
a period after the last sampling time, t,,,. We thus avoid
the task of estimating A,(7) between the times fg and
tar,» Which is one of interpolation (Krishnaiah and Rao
1988) rather than prediction. In most practical cases
the time period we ignore is small and the interpola-
tions would often be near the predictions, so the results
would be little changed. We thus have:

Problem Statement 1: Predict the difference between
the functions A,(#) and Ag(#) for the period between the
end of the study and the time horizon, #y, with a mea-
sure of uncertainty. (This difference may be one or
more summaries of a difference function like A, () —
Ag(?) or A,(2)/Ag(2), etc.)

Chance

Measuring uncertainty.—When using a prediction or
estimate to make decisions, we need criteria for judging
its reliability and comparing it to other estimates. One
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criterion might be the size of its error, but the error is
unknown. An alternative is to measure the reliability
of the estimating method when applied to data of the
type we observe: Are its errors ‘‘usually’ or ‘“‘likely
to be”” small? The method will give varying answers
because the data will vary—the observed data are treat-
ed as only one instance of data we could have observed,
and it is to these possibilities that “‘usually’ and “‘like-
Ly:t refen

Probability provides the units to measure uncertainty
or reliability. It is hard to define, but ignoring its def-
inition can lead to meaningless calculations. We use
the “‘frequentist’” definition, in which *“‘chance pro-
cesses’’ can be repeated under “‘identical” conditions
and lead to different results. The probability of any set
of possible results is the limit, as N — =, of its relative
frequency in /V identical repetitions, ‘‘independent’ in
the sense that no set of repetitions affects any other
set. Thus it is a property of the limit of many repeti-
tions, even though in fact we usually perform (or ob-
serve) only one.

This definition agrees with the intuitive idea of prob-
ability as (number of favorable cases) + (total number
of cases) and is consistent with the theory underlying
other types of measure (e.g., standard axioms lead to
the laws of large numbers)—but consistency and agree-
ment with intuition do not establish a relationship with
the real world. Exactly identical conditions are both
impossible and undesirable: they would lead to iden-
tical results rather than a distribution, except possibly
for some aspects of particle behavior. ‘“‘Apparently
identical’’ seems preferable, but may introduce depen-
dence on an observer. Some scientists reject frequen-
tism, and define probability in terms of personal degree
of belief. The resulting Bayesian methods may have
much to offer in assessment (e.g., West and Harrison
1989, Raftery et al. 1995, Crome et al. 1996, Ellison
1996, Wolfson et al. 1996) and some of this paper
applies to them too, but they introduce new problems
so we do not consider them explicitly. Other scientists
may accept frequentist definitions as intuitively rea-
sonable—and put them out of mind: after all, ““mass,”
“point,”” and even “‘life’’ are hard to define, too, though
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clearly useful. Putting them out of mind can lead to
trouble.

Inferential “‘probability:” sources and credibili-
ties.—Claims of randomness and calculations of con-
fidences, P values and other frequentist conclusions
refer to long-run results from some repeatable multi-
outcome process. If we cannot specify the process and
the source of the ‘‘chance,” these claims and calcu-
lations have no meaning. When we can, their credibility
depends on how well the idealized process matches the
real process producing the data. Some categorizations
may help assess this. We ignore the credibility problem
of misleading description. e.g., when only the **favor-
able” experiments, summaries, or tests are reported.

Device-based probabilities result from deliberate
randomization, using devices like coins or random-
number tables to choose individuals (*“‘units’”) for ob-
servation or to assign them to treatments. Nature-based
probabilities treat each unit’s value as an outcome of
a natural process (movement, mate choice, cell divi-
sion, environmental variation, etc.) that yields different
results from apparently identical conditions.

The distinction is rough: devices are ‘“‘natural’ too.
If anything, they are the more deterministic, but our
ignorance allows us to construct setups that seem to us
identical in all relevant ways yet do not lead to identical
results. Their credibility is greater because their simple
assumptions (independent trials; equal chances of O, 1,
..., 9) can be checked, and have been supported, by
experiments with coins, random-riumber generators,
etc., at many times and places. (For this reason, we
think of “‘randomly thrown quadrats’ as Nature based.)
Even so, most of us will randomize again if the ran-
domizing device gives a strong ‘“‘nonrandom’’ pattern
in a particular case—the probabilities might be “‘true”
but still not reflect anyone’s uncertainty well.

Design-based probabilities refer to hypothetical rep-
etitions of the ‘““choice’” process by which the unit val-
ues observed came to be selected, or assigned to a
particular treatment. This group contains all device-
based probabilities, like experiments with units as-
signed randomly to treatments or samples of quadrats
chosen from random-number tables. It also contains
some Nature-based probabilities, where no explicit ran-
domizing device is used but the natural process deter-
mining unit values is assumed unrelated to the choice
process. We call this ‘“‘as if random’ sampling by Na-
ture. Organisms from traps, mist nets, commercial sup-
pliers, or ‘‘grab samples” in the laboratory are ex-
amples, as often are higher-order terms in random-ef-
fects ANOVA. Model-based probabilities are calculat-
ed from models of the process by which units obtained
their values. Measurement error, time series, spatial
statistics, and analyses of survival or reliability are
examples.

This distinction is also rough. Nature-based, design-
based probabilities often model the distribution from
which the units were chosen, or the form of relations
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with covariates. Some model-based methods use im-
plicit models: e.g., assumption of measurement error
Normality arises from convenience, experience, and
perhaps the idea that these errors are roughly sums of
many small errors to which the central-limit theorem
should apply. There are cases where device-based and
model-based probabilities giving different answers can
both be defended; e.g., we could use randomly chosen
points to estimate percent cover of algae over an area,
but base the estimate and its uncertainty on a model
allowing for correlation between points.

The credibility of nature-based assumptions varies.
“As if random” observations may come from a sub-
population that is smaller than the target population but
seems likely to reflect it in all relevant ways; e.g., med-
ical trials select patients from those available at the
time, but the results are used mainly for future patients.
There may be little or no device-based selection and
units may differ in ways suspected to be relevant but
hoped to be small or to ‘“‘balance out™: distributions
of potential confounding variables in the samples being
compared are assumed similar enough to have arisen
by genuine random sampling from a common popu-
lation, and thus to be treatable as part of the error. This
can be risky; e.g., the Salk vaccine trials could have
used children whose parents refused permission as
“Controls,”” hoping that permission and vulnerability
were unrelated, but these children were mainly from
lower socio-economic classes, where immunity due to
mild forms of early childhood polio was more common
(Freedman et al. 1998). Implicit models can lead to
meaningless, misunderstood, or arbitrary conclusions;
e.g., Breiman (1995) argues that a standard inference
of sex bias in employment uses an imaginary repli-
cation of something nonreplicable (a particular cor-
poration) and therefore ‘‘makes no sense.” Similarly,
the Impact site in assessment is nonreplicable (see
BACI: Response to comments, below). Thus, when the
“chance” in inference statements is to be attributed to
nature, it is important to say where the “‘chance’ comes
from: What are the ‘“‘repeatable’ processes on which
it is based, and how credible are models used to de-
scribe them?

Time series

Introducing chance: the need for a model.—We first
consider the problem of predicting the censused abun-
dance, Ag(?), at a time after startup, having observed
Ag(?) exactly and continuously during the Before pe-
riod. L.e., we assume all Before times are observed,
with no sampling error. We do so partly to simplify the
problem but also to make a point: since this prediction
cannot be guaranteed, the ““chance’ in our real problem
cannot lie only in design choices, either of units to
sample (sampling error) or of Before-period sampling
times. E

The extra chance must lie either in the observed
Before-period values, or in the future value we want
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FIG. 1. Simulated example of a time-series process adding process mean and process error. (a) The deterministic part

(process mean) is F(r) = 70 + 25 sin(1 + 2mw#/365), where t is in days. (b) The stochastic part (process error) is the AR(1)
model &(r) = pe(r — 1) + a(r), with p = 0.985 and Var(a) = 0.6. (c) The sum of (a) and (b).

to predict, or both. At first it may seem that it should
lie only in the future value: we are not uncertain about
past values. But if the observed Ag(#) values do not
involve chance, then we cannot use them to assess the
chance error in the future Ag(r) value, and thus the
reliability of our prediction. We cannot make the pre-
diction at all unless we assume some relationship be-
tween the past of Ag(7) and its future.

A model-based way to solve such problems is to treat
the entire function, Ag(?), both observed past and pre-
dicted future, as arising from a natural process, in-
volving deterministic and stochastic parts. The deter-
ministic part usually has known (guessed) form with
unknown parameters, e.g., a seasonal sine wave plus a
linear trend,

F(f) = p + a sin@wt) + B cos(2mr) + vyt (2)

where ¢ is in years. The stochastic part is a single func-
tion, e.g., Ag(r) — F(z), but we cannot anticipate the
sizes of future chance errors unless they are the results
of processes that have been repeated multiple times in
the observed data. We thus need to model the stochastic
part as a function of multiple independent “‘errors.”” A
discrete-time example is the autoregressive process
AR(1)

e(®) = pe(t — 1) + a(r) 3)

where p is a fixed number, the first-order autocorrela-
tion. (The continuous-time version, the Ornstein-Uhl-
enbeck process, is more complicated; see Arnold 1974
or Priestley 1981:158-168.) The &(#)’s are not inde-
pendent (each contains a residue of the last) but are
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functions of the independent perturbations a(t), a(t —
1), .... Because of this structure, we can estimate
distributional properties of the &(7)’s from observations
of them or of F(z) + &(t). Eq. 3 can be extended to an
AR(k) process (Table 1) and in other ways.

The deterministic and stochastic parts can be com-
bined additively to give

Ag(t) = F(1) + &() (4

as in Fig. 1 (with y = 0), or multiplicatively to give
Ag(®) = F(n)e™® (©)

or in many other ways, e.g., by making Ag(¢) a trans-
formation of one of these. Deciding the appropriate
model forms for F, &, and their combination is often
difficult and uncertain. A linear trend is usually inap-
propriate for abundance, though it might approximate
along cycle or slow recovery over a limited time range,
or a declining population might be represented by Ag(?)
= exp{F(r) + (1)} if y is negative. Seasonal variation
in abundance may not be like a sine wave, and it is
easy to imagine alternatives to the implicit assumption
here that the chance disturbances, a(#), have additive
effects which decline exponentially over time. How-
ever, the combination of a deterministic forcing func-
tion and a chance function that can be decomposed into
independent parts can allow for much complexity of
behavior.

The main point is that introducing chance into a time-
series problem requires a model whose form is usually
uncertain. Under it, every value of the outcome func-
tion, Ag(#), both past and present, involves chance: the
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entire function can be regarded as a random choice (a
“realization””) from a collection of possible functions.
The random values, Ag(?), for —» < ¢t < o, are not
usually independent nor identically distributed. For 7
1. the means and variances of the random values
Ag(r) and Ag(u) may be different, so both the ““mean,”
ws() E{Ag(®)}, and the ‘‘variance,” o3(?) =
Var{Ag(7)}, of the process Ag are functions of 7. Neither
is necessarily related to the average or the variation of
Ag(r) over any range of time values, although most
models imply such relationships, so these parameters
can be estimated. If Agz(7) is a future value, and AB(t)
is its prediction based on the Before values, then the
“‘chance” in the prediction error, Ag(r) — Ag(?), comes
from both terms.

Interpreting “‘chance.”’—**Nature™ is the source of
the chance, which arises from events and cycles like
those of Table 5. The chance part of Ay(?) arises because
a particular sequence of these chance events occurs; if
a different sequence had occurred, Az(#) would have
been different. Treating such events as ““‘chance’ seems
reasonable in many cases, since they are numerous and
our ability to predict or measure them or their effects
is poor. It also links observed values to future ones:
both are outputs of the same processes, both chance
and deterministic.

Since Nature is also the source of the forcing func-
tion, the distinction between random and deterministic
variation is partly arbitrary: goals, predictability (reg-
ularity), and mathematical convenience all play a role.

In Table 5, sources 5-7 will usually be “‘chance,” as

will source 4, except in special cases. For source 3,
seasonal variation seems regular and well-understood
enough to be “‘systematic,” but can be treated as ran-
dom (e.g., Box and Jenkins 1976), while ENSO is likely
to be “random’ until our ability to predict its occur-
rence and effects improves.

In time series, more than one chance model is likely
to be credible. Nature’s randomizing is usually re-
peatable only in imagination. It may be plausibly rep-
resented as combining many independently replicable
events, some of which can be observed or checked
(e.g., from weather records, experiments, or ‘‘repli-
cates” made up of separated segments of the time-
series record). Goodness of fit can be checked for any
particular model. Still, the ‘‘chance’ represents our
ignorance as much as objective reality. Choices of what
features to model, which ones to treat as deterministic,
model forms for both deterministic and stochastic parts,
and how to combine them, are often based as much on
plausibility, flexibility, and tractability as on known
mechanisms or goodness of fit. There will usually be
many models that fit about equally well, especially
when data are sparse as is common in assessment. Even
if one fits better than others, this is not proof of reality
(if any model can be “‘real”’). It will often be important
to present results from a range of models, which are
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compared for both substantive plausibility and formal
fit to the data.

IA Problem statement 2: prediction and parameter
estimation

We have presented the assessment task as predicting
the differences between future values under ‘‘alter-
ation” and “‘no alteration” conditions, or summaries
of these differences. We now argue that it can be re-
defined as estimating the difference between parame-
ters (usually means or parameters describing mean
functions) of “‘alteration’” and *‘no alteration’’ models.
This requires justification.

Most predictions are parameter estimates. E.g., from
observations of Ag(t) = F(t) + &(t,) in Egs. 2 and 3,
we might obtain estimates i, &, B, and 9, and thus pre-
dict a future value as Ag(r) = [ + & sin(2mwr) +
B cos(2mr) + At. Usually, the uncertainty in prediction
is greater than that in estimation: the former, esti-
mate —future value = AB(t) — Ag(#), has two parts con-
tributing independent variation: (1) estimation error =
estimate —parameter value AB(t) — F(1), and future
variation parameter value—future value Bt~
Ag(t), where F(r) = p + a sin(2wt) + B cos(2wt) +
vt. We must show that this is not a problem here. When
our arguments do not apply, substituting parameter es-
timation for prediction may need more justification
than it usually gets.

One argument is that our “‘effect” is the difference
between future values, not the values themselves, so:

Prediction error = »[AA(t) - Ag()] = [A.() — A(D)].

If abundance is the sum of a forcing function and a
stochastic term, as in Ag(?) = Fg(?) + e5(r) and A,(2)
A() + e4(2), then

Ap() — Ag(®) = [FA() — Fg(@] + [ea(t) — e(n)]

i.e., parameter — [parameter—future value]. But if the
alteration affects only the forcing function, so that &,(z)
= gg(1), then the second term, which is often the larger
part of the uncertainty in prediction, is zero.

When the alteration affects the chance component
(e.g., changing the response to storms), or the sto-
chastic and deterministic components are not added (as
in the model A(r) = F(t)exp{e(?)}), or the “effect” is
not absolute change, A,(r) — Agy(#), but fractional
change, 1 — A,(#)/Ag(?), or another measure, cancel-
lation is likely to be imperfect. Some cancellation will
still occur unless the alteration reverses responses (e.g.,
previously harmful perturbations become beneficial),
but the error in predicting a particular future value may
be significantly greater than the error in estimating its
mean in these cases.

This additional error may be reduced by averaging.
Judgments of the damage done by an alteration will
usually depend more on effect averages over time (e.g.,
the average summer effect) than on the effect at any
particular time. The average of independent random
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values converges to its mean as the sample size in-
creases. For time series, the average of the actual series
over a time period converges to the average (over time)
of the mean function, w(r), as the time period increases.
There are exceptions, e.g., the natural history of Earth
may have been redirected when a chance asteroid led
to the extinction of the dinosaurs and the rise of mam-
mals, but it would be hard to justify using such ‘‘non-
ergodic™ processes for making decisions. Most stan-
dard models and almost all plausible models of natural
series like abundances are ergodic (Breiman 1968:
chapter 6). Thus the averages of both the “‘alteration”
and “‘no alteration” future values are likely to be close
to their means if the averaging is over a long period,
like 100 years or the planned life of the alteration.

This may not be enough. Averages of time series
may converge to their means only slowly. If serial cor-
relation is large, and we are concerned mainly with the
effect of the alteration over only a few years, then the
uncertainty in the predicted difference could be non-
negligibly greater than the uncertainty in the estimated
difference of the means, unless the chances largely can-
cel as above. If the time horizon is short, predictions
(forecasts and interpolations) based on both the time-
series model and the recent values (e.g., Box and Jen-
kins 1976) may be better than estimates of means.

Thus the mean squared error of the estimated dif-
ference of means is often, but not always, a reasonable
approximation to the mean squared error of the pre-
dicted difference of future values. When this is true we
obtain:

Problem Statement 2: Estimate the difference be-
tween the means of functions Ag(7) and A,(¢) for the
period between the end of the study and the time ho-
rizon, ty, with a measure of uncertainty.

As before, the ““‘mean” of Ag(f) = wg(7), a function
of time, so the difference between the means is also a
function of time. In practice, we usually will not need
this function for each time point, but only summaries.
For example, for most models, p,(#) — pg(#) will not
depend on the year but only on the time of year, so
averages over a year or a season will be useful.

Variation, correlation, and sparse data

Two error sources.—We now drop the assumptions
of continuous and exact observation of censused abun-
dances, Ag(7) or A,(¢). Instead, we observe (or estimate)
abundances at discrete sets of times:

Iy = Ag(ty) + &g Iy = AaGa) + Eu; (6)

where the £’s are independent sampling errors. This is
a new source of error, additional to the “‘process error”
in the stochastic models of Ag(f) and A,(?) (e.g., the
g(1) of Eq. 4). They do not change the problem, though
they complicate it, e.g., adding independent sampling
errors to an AR(k) process for the censused abundances
gives an autoregressive moving average process
ARMA(k, k) for the estimated abundances (Cox 1981;
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Table 1). Their variances and other parameters can be
estimated if several samples are taken at each sampling
time, but are usually of less interest; the targets are
parameters of the distributions of Ag(#) and A,(2).

Errors from both sampling and temporal fluctuations
are often large—standard deviations may be as great
as the abundance itself. Sampling errors are large be-
cause of spatial patchiness, sampling difficulty, etc.
They can be reduced, e.g., the variance of the estimated
censused abundance can be made arbitrarily close to
zero by taking enough samples or sampling a large
enough fraction of the Impact site on each visit.

Correlated temporal errors.—Errors” due to tem-
poral variation in the censused abundances are harder
to reduce. Events and cycles like those in Table 5 can
have long-lasting effects on abundance even when their
environmental effects quickly disappear (e.g., source
5). Usually, a chance excess or deficit is likely to re-
main for some time: abundances close in time are likely
to be close in value, so both censused abundances, A,
and observed abundances, /, will be serially correlated.

Increasing the number of sampling times without
increasing the length of the study period decreases the
gaps between samples. This increases the correlation
between adjacent values—much of the information
from the additional samples is redundant. Fig. 1b was
generated from Eq. 3, using a correlation of 0.985 be-
tween values 1 d apart; one could observe it for months
without seeing most of the variability. Fig. 2 shows
more formally that, for Eq. 3, the variance of the es-
timated mean does not shrink to zero as sample size
increases within a fixed study period. Its limit (an in-
finite set of sampling times, or continuous sampling)
can still be too large for effective decision making if
the study period is short or the correlation is large.

These features also apply in more realistic models:
estimation errors can be large because natural variation
is high, correlation declines only slowly over time, and
study periods are short. The Before period, especially,
cannot usually be extended to permit better estimation.
Eq. 3 may be optimistic; e.g., recovery or decline from
a crash or peak caused by source 5 (Table 5) may be
slower than exponential. -

High correlation might also not be detected in a short
period. If the first and last observations within a period
are highly correlated, a tendency for observations clos-
er in time to be closer in value may be obscured. This
can arise in ecological time series when occasional rap-
id changes in abundance are followed by periods of
relative constancy. For example, a crash or boom oc-
curring in or near the “‘Interim’’ period (between Be-
fore and After) might last through much of the After
period and hide or mimic an alteration effect.

High temporal variability and correlation make es-
timation inaccurate: they force us to make a large al-
lowance for uncertainty. Perhaps worse, long-term cor-
relation can conceal the inaccuracy, so our allowance
for uncertainty is too small—our conclusions are in-
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valid. For example, if we run repeated trials of our
methods, using ““Before’” and ‘““After’” data from places
that have not in fact been altered, our confidence in-
tervals may contain the true ‘‘effect,” zero, less often
than claimed, unless observations are taken over longer
periods than are usually available. Reducing sampling
error or increasing sampling frequency will not prevent
either. Methods to reduce temporal variation and cor-
relation (especially long-term correlation) are often es-
sential.

BACI: using comparison sites and covariates to
reduce temporal variation and correlation

In experiments, covariates or concomitant variables
“predict to some degree the ... response ...on the
unit” (Snedecor and Cochran 1989:374; also Cochran
1957). The prediction is possible because some sources
of natural variation affect both covariate and response.
Ideally, using the covariate will remove this common
variation from the prediction error. If treatments do not
affect the covariate, then changes in the prediction can
be used to estimate treatment effects; e.g., instead of
(predicted value given treatment 1) — (predicted value
given treatment 2), we can use (predicted value given
treatment 1 and 'temperature = 15°) — (predicted value
given treatment 2 and temperature 15°), or the av-
erage of this difference over temperatures. These es-
timates will be more precise than estimates based on
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response values alone if the variation removed (that
common to both the covariate and the response) is
greater than the variation added (that affecting only the
covariate).

In observational studies, covariates are ways to ‘‘re-
move the effects of disturbing variables” (Cochran
1957:262) or “‘adjust for sources of bias” (Snedecor
and Cochran 1989:375). In effect, we compare predic-
tions of the values that would have been obtained if
the disturbing variables had the same values for all
units.

Both goals apply to the disturbing effect of variation
over time in impact assessment. Formally, this does not
lead to bias in IA, because variance due to temporal
fluctuations in the censused abundance is estimated and
allowed for. From this viewpoint, the main aim is to
get more accurate effect estimates by reducing this var-
iance. On the other hand, if the autocorrelation is too
strong, the full range of natural temporal variation will
not be seen in a short Before or After time series, so
its variance will be underestimated. It becomes a source
of natural difference between Before and After that is
not fully accounted for—i.e., a source of bias. From
this viewpoint, the main aim is to get more reliable
estimates of temporal variance, by reducing this au-
tocorrelation. The BACI approach attempts to achieve
both goals by using unaffected sites to help predict
Impact values.
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A simple comparison site model.—To motivate the
simplest BACI method, the Group 2(a) analysis (see
Intervention analysis and BACI: Group 2. . ., above),
imagine a region consisting of a patchwork of sites,
one of which is the Impact site. Assume that the ob-
served abundance at any site, S, and time, ¢, is the sum
of (1) an average value determined by permanent fea-
tures of the site, given by myg; (2) systematic variation,
flr), and broad-scale stochastic variation, R(z), which
are the same for all sites in a region surrounding the
Impact site; (3) local stochastic natural variation, which
is different at different sites and is described by &4(7);
(4) sampling error, also different at different sites and
described by {4(#); and (5) a constant alteration effect,
A, which affects only the Impact site, only in the After
period. Formally, we observe at the Impact site:

Iy, = my + f(tg) + R(tg,) + &(tg) + {i(2)

foriii—=2l 2% ol @)
I = my+ f(ta) + R(ty) + &(ta) + §i(2a) + A
foriti=-1,2 v s 8)

With only the 7, as data, an intervention analysis
approach would be to make parametric models of f, R,
and &, and fit them to predict the future values, Ag(tp)
=m + fit) + R(t) + &ty and A,(f) = the same +
A, or just to estimate A directly. The results would be
highly uncertain, because of the uncertain model forms
for fand R, and because R may involve long-term tem-
poral correlation stemming from major, region-wide,
environmental variation.

Now suppose we also have observations on abun-
dance at the same times from a comparison site, in the
same region but far enough away not to be affected by
the alteration. We obtain two more data sets, given by
the same Eqgs. as 7 and 8 except that “C”’ replaces “*I"’
and ““A” is absent. The difference between the Impact
and comparison forms of Eq. 7 gives

Iy; — Cg; = my — mc + &(ty;) — &c(ty) + {i(2s)

= Le(ty) fori=3a1% 25 = e ©)
and
Ini = Cai = my — mc + &(t5) — ec(ta) + §i(2a0)
(0l N (o m P i s Ay

The important change is the disappearance of R and
f- In their places are additional errors from sampling
and local temporal variation. The uncertainty in the
estimate of A is reduced if these additional errors are
smaller, less complicated, and less strongly correlated
over time than were f and R. This may often be plau-
sible. The sampling errors, {, are usually independent
and can be reduced as discussed earlier. Local temporal
perturbations may be smaller and fade faster than re-
gion-wide ones. In some cases they may fade fast
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enough for the correlation between successive differ-
ences to be negligible. Fig. 3 illustrates this: the orig-
inal site abundances in Fig. 3a are strongly correlated
but not seasonal; the Impact—Control differences of
Fig. 3b are weakly correlated, and show the alteration
effect more clearly.

If approximate independence of the differences over
time is plausible, and satisfies tests and other data
checks, then the analysis of Group 2(a) is reasonable,
if simplistic. This could be based on means or more
robust estimates, and perhaps should avoid assuming
equal Before and After variances if the magnitudes of
population fluctuations or sampling errors seem likely
to vary naturally over time (see Stewart-Oaten et al.
1992). If the differences are correlated over time, as
in Fig. 3, the analysis is messier, but prediction ac-
curacy will still be much better than without the com-
parison site—and will itself be estimated more accu-
rately—if this correlation is weak.

Covariates and ‘‘Controls” in assessment.—The
comparison site ‘“‘covariate’’ in the previous section has
sometimes been called a ‘““Control,” e.g., by Green
(1979) and Stewart-Oaten et al. (1986). The distinction
is blurred. Controls and covariates both remove poten-
tially confounding extraneous variation to highlight
treatment effects. In the case of controls, this variation
might be natural or a treatment artifact (e.g., an effect
of caging or transplanting); without controls, it might
be ignored, leading to bias. In the case of covariates,
the variation is usually natural; without the covariates,
it would still usually be allowed for, leading to greater
explicit uncertainty. One distinction is that variation
among Controls is often used to help estimate error,
while variation among covariates rarely is. It usually
makes no sense because the covariates measure dif-
ferent types of variables, e.g., rainfall and temperature.

The use of the term “Control” in assessment may
be unfortunate. It could cause confusion with experi-
mental controls, an error in the IVRS approach, which
we discuss in that section (see IVRS (impact vs. ref-
erence sites): Design-based justification. . . , below). It
could also lead to reduced flexibility in analysis, by
limiting the covariate relationship to models like Egs.
9 and 10. This is simpler than the typical covariate
relationship, although it is common when the covariate
(C) is of the same type (abundance at a site) as the
dependent variable. It is discussed in this connection,
as an alternative to covariance, by Fisher (1960: chapter
IX), Cox (1957, and 1958: chapter 4), and Snedecor
and Cochran (1989: chapter 18). :

Analysis 2(b) arises from the usual covariate rela-
tionship (Fig. 4a), the linear model

Iy; = BCg; + a + error
I, = BC, + o + A + error (11)

where B, o, and A are all unknown. This would cor-
respond to Egs. 7 and 8 if f and R varied among sites
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Impact and Control Abundances
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FiG. 3. Simulated example of the simplest BACI, Eqgs. 7-10, but with no systematic variation, f (season or trend), and
no sampling error, {. (a) Impact (solid line) = 580 + R(z) + g(r) + A, where ¢ is in days, R(7) is given by Eq. (3) with p
0.995, and sp{a} = 20; g(r) is given by Eq. (3) with p = 0.8, and sp{a} = 20; and A = 0 in the Before period and A
—40 in the After period. Control 1 = 680 + R(f) + &¢,(1), where &, is generated like &; but independently of it. Control
2 = 460 + R(r) + &c,(2). Plots record censuses taken every 10 days. (b) Difference between Impact and average of Controls.
This line is the solid line in (a) minus the average of the broken lines in (a).
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FIG. 4. Possible relationships between the observed value at control, C, and the conditional expected value at Impact,
E{I | C}. For panels a—c, solid line = Before, broken line = After. (a) E{I | C} vs. C based on Eq. 11 (cf. Mathur et al.
1980), with slope B = 1 and intercept @ = 70. The alteration reduces E{/ | C} by the same amount for each value of C, by
reducing the intercept: A = —50. (b) E{/| C} vs. C based on Eq. 12. The effect is a reduction proportional to “‘natural”
abundance: A = —0.5, so the slope changes from B = 1 to § + A = 0.5. (c) E{/| C} vs. C based on Eq. 14. The alteration
reduces both the slope (Bg = 1 to B, = 0.5) and the intercept (ag = 70 to o, = 20); both act to lower abundance. (d) How
measurement and process error influence the estimate of a purely multiplicative effect using the covariate model. Abundances
are assumed to be generated by I/ = B,Q + v and C = Q + & where Q, v and £ are independent random variables with
means 200, 0, and 0, respectively. The alteration changes Bg = 1 to B, = 0.5. The pairs of lines show the Before (higher
ll;l/e)z andoAfter relationships between E{/ | C} and C. Solid lines, 0%/c3 = 0.5; broken lines, c%03 = 2. (Panel b shows
oi/og = 0.)
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but with fi(r) = Bgf(r) and Ry(r) = BsR(1); e.g., the sites
may respond to regional changes not identically but
proportionately. As far as we know, Mathur et al.
(1980) were the first to use this model in assessment,
and to stress that the ““control” is a predictor of the
Impact site. They present their approach as an alter-
native to using ratios (cf. Eberhardt 1976), which cor-
responds to the covariate relationship

Iy, = BCy; + error
I, = (B + A)C, + error (12)
with error variances roughly proportional to the means

(Fig. 4b).

Multiple covariates and nonlinear models.—As Ma-
thur et al. (1980) remark, this approach can use multiple
covariates, which need not be comparison-site abun-
dances. They also use temperature and river flow, and
comment that, with more than one control, they would
have used the average or a multiple regression. A sim-
ple extension of Egs. 9 and 10 is to replace Cp; by C.p;
the average over Control sites. An extension of the
regression model of Eq. 11 is

Iy, = 2 B;Xjp + o + error
j

Li=2 BXu + o + A + error (13)
J

where the X’s include both multiple-comparison site
abundances (or average abundances over groups of
sites) and environmental variables like temperature.
Other extensions are possible by transforming any of
the variables, or by nonlinear regression relationships,
though we suspect that real data will usually be too
sparse, and errors too large, to justify complex models
or allow numerous parameters to be estimated.

Some advantages of comparison sites as covari-
ates.—Any variable unaffected by the alteration can
be a covariate. Physical, chemical, or biological vari-
ables are attractive candidates. They directly affect
abundances and may lead to a better understanding of
mechanisms. However, they may require complicated
models with time lags and many unknown parameters.
Both problems also arise if too many covariates are
used.

Comparison-site abundances have several potential
advantages. They may reflect much of the natural var-
iation of the physical, chemical, and biological factors
affecting the Impact-site abundance. They can reflect
only widespread variation, since they must be far
enough away from the Impact site to be unaffected or
negligibly affected by the alteration. But this may in-
clude much of the variation we most want to remove:
large changes that reduce precision, and long-lasting
fluctuations that threaten validity because the Before
and After periods may be too short to observe their
extent. When sources of variation (Table 5) are strong
enough to cause large, long-lasting changes at a site,

83

ALLAN STEWART-OATEN AND JAMES R. BENCE

Ecological Monographs
Vol. 71, No. 2

they may tend to be widespread. Recovery from a boom
or crash, by immigration or dispersion, can be fast if
it is local but slower if neighboring sites are similarly
affected.

Another potential advantage is simplicity of the pre-
diction formula. The same disturbance should affect
similar, nearby sites in roughly the same way at roughly
the same time. Simple (e.g., linear) models without
time delays have a good chance of removing significant
variation and correlation. This is important when the
number of sampling times is small, since each param-
eter to be estimated adds uncertainty and reduces the
degrees of freedom available to measure it.

Conditional estimates of non-additive effects: BACI
problem statement 3.—Relatively simple functions,
like Egs. 11-13 with only a few C’s or X’s, suit the
usually small number of sampling times. However, all
these functions assume that the effect of the alteration
is a constant. Instead, the effect could vary with season,
current direction, and other environmental variables, or
appear as a trend through some or all of the After
period, reaching a maximum late in the period or after
it. :

Effect size is also likely to vary as regional abun-
dance varies, both for natural reasons and because we
will want to know effects in different scales—e.g., ab-
solute effects for commercial reasons but proportional
effects for understanding mechanisms or planning mit-
igation. Effects that are constant in one scale will be
variable in others. This variation could be built into
the covariate model, by allowing coefficients, as well
as the intercept, to change for the After series. Eq. 12
already does this; the change at Impact is proportional
to what the value would have been without the alter-
ation—both are proportional to the abundance at the
Control. More generally, Eq. 11 might become

Iy;

BpCp + ap + error

Ini

= BACa; + a4 t+ error (14)

(Fig. 4c), to allow non-additive effects. Bence et al.
(1996) considered this model in detail, and contrasted
it with the model of Egs. 9 and 10.

Such a model may change the target of the assess-
ment. So far, it has been the difference between a future
value and what it would have been without the alter-
ation, or between the averages of these variables over
some time periods. It may be useful to describe varying
effects by their dependence on future conditions, es-
pecially when these are predictable, e.g., seasons.
When the conditions cannot be well predicted, as when
the effect appears to depend on the comparison-site
value (as a proxy for overall abundance or for what
the Impact abundance would have been), conditional
descriptions may be preferable for some purposes and
inferior for others.

When the effect varies, conditional estimates may
be easier to produce. Eq. 14 estimates the “‘effect’” of
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the alteration at time ¢ by (GA = QB)C(I) S
&g, where the B‘s and &’s are estimates of the B’s and
«'s and C(¢) is the future “*‘Control” value.

Unconditional estimates may be harder, but still are
often of central interest. A reliable estimate that an
alteration will decrease a fish population by 40% when
future abundances are high and 20% when future abun-
dances are low would be useful, but we might also
want to know how many fish are lost on average. We
are led to:

Problem Statement 3: Estimate the difference be-
tween the means of functions Ag(z) and A,(¢) for the
period between the end of the study and the time ho-
rizon, ty, conditionally on other variables that seem
important, with uncertainty measures. Use these results
to estimate the unconditional difference.

The covariate and difference models assess varying
effects differently. For the difference model we seek a
transformation (scale) for which the effect is constant.
For example, Egs. 9 and 10 can handle a constant mul-
tiplicative effect by interpreting “I’” and ““C”" as the
logs of the abundances, so A estimates log(luiw) —
10g(Zimou)- Effects on the untransformed scale are con-
ditional on the Impact value. For example, for multi-
plicative effects, if we observe 7 in the After period
then Je-3 is an estimate of the “‘no effect” value from
which we can estimate the absolute change. Converse-
ly, if a future “‘no effect” value is /, then the future
“with effect” value can be estimated as led. Similar
conversions can be made for other transformations, and
confidence bounds can also be treated this way.

In contrast, the covariate model expresses effects in
terms of future Control values, and can handle both
effects that can be expressed as constant on some
known scale and more complicated ones. For example,
a multiplicative effect could be modeled by Eq. 12 or
by Eq. 14. (We would prefer Eq. 14 because of the
“‘errors in variables” problem described below). Eq.
14 can also deal with effects that cannot be expressed
as constant, e.g., a change that is partly multiplicative
and partly additive, and its *“/”” and ““C”’ can be trans-
formed as well. Its estimated future effects, (B, —
Bg)C + &, — &g, are in terms of future values of C
(rather than /), which may be easier to predict since
both Before and After observations can be used. Formal
inferences may also be clearer, since error terms are
handled more transparently: it is estimating a future
observed Impact in terms of a future observed Control,
while the additive model’s A is estimating the differ-
ence between the means of the logs of 7, and I, ;pou-

“Errors in variables”.—In Eq. 14 ““C” is a future
observed Control value: it includes both process error
and sampling error. As for the ‘“‘errors in variables”
problem in regression (Fuller 1987), the values of the
B’s and a’s would change if the variances of the errors
changed—e.g., if the sampling error were reduced. The
predicted “effect,” (8, — Bg)C + &, — &g, can be dis-
played by plotting past or typical Control values, and
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comparing the corresponding Before and After Impact
predictions. However, the larger the error in ““C,” the
smaller the absolute value of ““B, — By’ is likely to
be.

For a simplified example, suppose I = $Q + v, where
v = error and Q is the “‘true’’ Control abundance with-
out either process error or sampling error; e.g., O/d
satisfies Eq. 7 with € and { both zero. A large Q then
indicates a large /. But if C = Q + &, a large C may
indicate either a large Q and hence /, or a large error,
&, which says nothing about /. Thus, the regression of
I on C, say I = nC + error, will be flatter: |q| < |d].
The fractional reduction depends on the variances of
Q and &, but as Var{§} — ©, 1 — 0 because C tells
nothing about Q and hence nothing about 7.

The covariate method estimates m, not &, since it fits
I to C directly. It does the same for the generalization
of Eq. 13 to

Iy, = 2 Bg;X;s: T ap + error
F)

Iy = Z BajXjai + a, + error (15)
J

where the alteration can affect any of the B’s as well
as o. :
Converting the difference model, Egs. 9 and 10, to
the form of the covariate model given by Eq. 11 pro-
vides another example. The result is not Eq. 11 with
slope (B) equal to 1. Formally, “/ — C = a + &’ can
be written as / = C + a + g, but this is misleading
because C and & are both subject to chance, and are
not independent. Assuming Normality, E{/| C} = \C
+ (1 = M) + «, where w is the mean of Q (and may
vary over time) and N\ = 03/(c} + o). That is, both
the slope and intercept are altered by amounts de-
pending on o?.

Interpretation of the difference and covariate models
is similar if alteration effects are additive (in the scale
of I and C in both models) and variances do not change
between periods. For example, both Eq. 11 and Egs. S
and 10 can be used to estimate the effect, A. Although
o2 alters both the intercept and slope of the relationship
between I and C, these alterations are the same in both
Before and After, and the effect is estimated by the
change in intercept; in the example above, the Before
relationship is E{/| C} = A\C + (1l — \) + « and the
After relationship is E{/| C} = A\C + (1l — \) + «
+ A. The difference in interpretation is larger when
effects depend on natural abundance. E.g., if I = 3,0
+ vand C = Q + & where Bp is the multiplier for
period P, then the predicted future Impact values with
and without the alteration are BAC + Bp(l — M,
where p and \ are as above. The purely multiplicative
effect in the difference model ““7 — B,C = &’ (or log(J)
= log(C) + ap + &) changes both the slope and the
intercept in the derived covariate model (Fig. 4d). It is
for this reason that we prefer Eq. 14 to Eq. 12 even
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when we believe natural variation and alteration effects
are all entirely multiplicative.

Feasibility and model uncertainty.—The BACI ap-
proach requires comparison sites, and possibly other
covariates, which can remove significant amounts of
the variation in Impact-site abundances, especially var-
iation with strong temporal correlation. We do not
know how often such sites exist, or when. Are there
particular life-history characteristics that make this ap-
proach more feasible? If so, how should the comparison
sites be chosen? Data on abundances from multiple
sites- within a roughly homogeneous region, and ex-
tending over many years, would be helpful in exploring
this.

We note that the reduction in extraneous temporal
variance may not be obvious from the data in a par-
ticular case if the temporal correlation is strong or the
Before and After periods are short. If the regional pop-
ulation fluctuates strongly but slowly, the full range of
natural temporal variation may not appear during a Pe-
riod. The error estimate from IA might be smaller than
that from BACI, because the observed variation within
a period is due mainly to sampling error and local,
within-site fluctuations. The relevant error for the effect
estimate, however, is over the full study period—Be-
fore, Interim, and After. The IA error estimate would
be biased low. If the BACI model is correct, then its
effect estimate is not contaminated by the regional var-
iation. Thus its true error will be smaller than the IA
error (assuming the regional fluctuation is larger than
the local variation and sampling error), and is much
more accurately estimated. However, this case also pre-
sents a potential problem for BACI: without much re-
gional variation in the Before period, it will be difficult
to find and fit a model that can accurately predict Im-
pact-site values from Control values over the full, more
variable, study period.

All solutions to the assessment problem depend on
models. Problem statements 2 and 3 incorporate models
by targeting the mean or some similar parameter, which
has no meaning except in the context of a model. These
models are not reality but represent a combination of
reality and human ignorance of natural laws and initial
conditions. Thus, in addition to model-dependent for-
mal measures of the uncertainty of effect estimates,
there is uncertainty about the accuracy of the model’s
representation of reality. Measuring model uncertainty
formally is a difficult problem (Chatfield 1995, Draper
1995, Buckland et al. 1997, Mallows 1998), but re-
peating the assessment using several different plausible
models will usually provide insight, especially when
combined with measures of model fit (Burnham and
Anderson 1992, 1998). Descriptive (e.g., graphical)
methods for including these as part of the assessment
results would be useful. We expect that, in many cases,
acceptable models will give similar answers (e.g.,
Bence et al. 1996).
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BACI: RESPONSE TO COMMENTS

In this section, we respond to some of the objections
that have been raised to the BACI approach, and com-
ment on some of the proposed corrections and im-
provements.

“Multiple Controls are needed’”’

Underwood (1992:147, 1994:152) asserts that the
use of a single Control site arose ‘‘for reasons that are
completely illogical,” and that multiple Controls are
needed to “‘solve problems caused by the lack of spatial
replication.”” This “N¥ = 1" criticism is wrong.

Variation among *““‘Control’ sites is irrelevant to the
assessment problem, because the goal concerns a
change at a particular nonrandom place. Intervention
analysis, Group 1 (see Intervention analysis and BACI:
Group 1 ..., above), needs no control at all (N =
0?°"). It constructs, checks, and fits plausible models,
and uses them to predict future values or long-term
averages. This basic approach underlies almost all
time-series analysis. The appropriate measure of un-
certainty for IA (intervention analysis) estimates and
predictions is the variation in prediction errors over
time.

The same is true for BACI (Before—After, Control—
Impact analysis). It is merely a special case of IA in
which one or more unaffected sites are used as co-
variates, to reduce unexplained temporal variation and
correlation. BACI Controls are not experimental con-
trols. They are not chosen randomly nor to be inde-
pendent of the Impact site, but deliberately chosen to
be highly correlated with it so they will be useful co-
variates. Variation among them is no more used to es-
timate variances of the effect estimates than is the
meaningless variation between such covariates as tem-
perature and rainfall.

The IVRS (impact vs. reference sites) approach does
use spatial variation to estimate error variance. This is
usually invalid, as explained in the IVRS section, be-
low. However, there are reasons for including multiple
controls in some impact designs. We now discuss some
of these.

Better prediction.—One possibility is to include
multiple Controls as covariates in the analysis. Like
other covariates, Controls can improve prediction, but
are not guaranteed to do so. Additional Control sites
are useful if they reflect different sources of variability
acting on the Impact site, i.e., if they are highly cor-
related with the Impact site but less so with other Con-
trols. For example, Controls might be selected on op-
posite sides of the Impact site. Too many predictors
can spoil the prediction (e.g., Hocking 1976, Belsley
et al. 1980:186-191, Miller 1990), especially if the
predictors are highly correlated, as Controls are likely
to be. To be useful, a. Control must share common
sources of temporal variation with the Impact site, but
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then multiple Controls are likely to share sources with
each other.

Another approach is to combine multiple Controls
into a few averages or medians representing different
aspects of variability (Upcoast/Downcoast, Open/Shel-
tered. Sandy/Rocky) for the main analysis. This could
reduce extraneous variability by averaging both local
temporal variability and sampling error, but again is
not guaranteed to improve prediction. A large number
of comparison sites may have a large fraction of “*bad”
ones, which do not reflect the natural variation affecting
Impact, and add extraneous variance of their own.

Scale and causality.—If a single Control is itself
affected by the alteration, the effect at the Impact site
will be underestimated or completely missed. A “‘gra-
dient”” design, the Group 2(d) analysis, with a series
of sites at varying distances from the Impact site, could
reveal the alteration’s effect as a function of distance
and direction. These sites would not be replicates, how-
ever. Their positions would be important for assessing
scale and cause. The spatial pattern of estimated effects
could be compared with that expected from the alter-
ation. A match would increase confidence that the al-
teration was responsible.

Schroeter et al. (1993) used a similar approach, with
a “‘Near Impact’ site, a **Far Impact” site, and a **Con-
trcl.”” Using the Control as a covariate, they showed
that several related species declined at the Near Impact
site after the alteration (a power piant). There were also
smaller declines at the Far Impact site. These were
evidence that the plant caused the changes, and also
helped indicate their extent. Conversely, the BACI
analysis showed an increase in the abundance of two
species at the Near Impact site compared to the Control,
although no mechanism involving the power plant
seemed plausible and other explanations were avail-
able. These alternatives were supported when the BACI
analysis showed a still greater increase at the Far Im-
pact site compared to the Control.

Insurance.—The most obvious argument for multi-
ple controls may be the strongest: something could go
wrong with a single Control. Commercial harvesting,
dumping of waste, or an accident occurring roughly
between Before and After could make it useless for
prediction. With several Controls, a site with known
problems can be dropped.

If a problem is suspected but not known, then the
average (or a robust estimate like the median) of a
group of Controls could reduce its effect. Multiple Con-
trols can also be used to check for such ““‘confounding”
disturbances. Note that a ‘‘pseudo-assessment,” in
which one Control plays the role of an *“‘Impact’™ site
and others the role of ““Controls,” should not indicate
a significant change occurring at the time of the alter-
ation (Carpenter et al. 1989).

“Different sites have different abundance paths”’

Underwood argues that ‘‘there is ... no reason to
expect two sites to have the same time-course of chang-
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es in mean abundance’ (1991:1575), ““two arbitrarily
chosen sites may very well differ in their changes
through time, regardless of whether there has been”
human interference (1992:146), and “‘[BACI cannot]’
detect impacts in populations that have spatial and tem-
poral interactions in their abundances’ (1994:5). These
assertions do not distinguish between the censused
abundance, A(z), and its mean, E{A(r)}, which is de-
fined by a time-series model. The standard ANOVA
test for Time X Site interaction tests parallelism of the
censused abundances, A(tg;) and Ac(7g;). BACI does not
require these to follow parallel paths at Impact and
Control. Each is expected to exhibit some variability
that the other does not, from local natural temporal
fluctuations and differences in responses to the same
broad natural fluctuations.

It is the Impact and Control mean functions that are
assumed to be parallel—and then only for Group 2(a)
analysis and Egs. 7-10 . This is no more discredited
when two random paths are not parallel than is a coin’s
fairness when a single toss gives a tail. The problem
described as ‘‘non-additivity’’ by Stewart-Oaten et al.
(1986) arises in Group 2(a) analysis if the Before dif-
ferences, Iy, — Cg,, are consistently larger when the
sum is larger, or steadily decrease over time, or display
other patterns that support plausible alternatives to as-
sumptions about mean functions (e.g., parallelism) or
errors (e.g., independence or a simple correlation struc-
ture). Checking for such patterns, and judging plau-
sibility, are important parts of assessing model uncer-
tainty.

If the model / — C = p + ¢, underlying Analysis
2(a), is implausible or fits the data poorly, the abun-
dances can be transformed, e.g., to logs, other covar-
iates can be used, or w can be replaced by . + Bsin(b
+ 2mt) or another systematic function of time. Analyses
2(b) and 2(c) are still more flexible and may be more
interpretable. In all these models, the distinction be-
tween ‘‘chance’ and ‘‘systematic’’ variation is one of
judgment and model convenience. The modeler can
choose to regard all variation as due to ‘‘chance’ (as
do Box and Jenkins [1976], with seasonal variation),
so the model cannot easily be discredited until the er-
rors are modeled too.

No model is exact; we explicitly ignored slow *‘geo-
logical” changes and discussed the problems of mod-
eling ‘“‘chance.” IA and BACI model “‘error’ in terms
of independent values from distributions representing
sampling error and local perturbations. The model must
assume enough of these values occur during each pe-
riod (Before and After) for the variances of effect es-
timates to be reliably estimated. Study periods could
be too short for this to be credible; consider that some
types of perturbation (e.g., epidemics) may occur too
rarely to be allowed for but have effects that last
through the period. This possibility motivates BACI *
and other covariate methods (an epidemic is likely to
hit neighboring sites similarly). Even for reasonable



Using Before-After-Control-Impact in Environmental Assessment

324

study periods, the special features that caused the Im-
pact site to be chosen for the alteration may make it
too different from nearby sites for BACI methods to
help. Cycles (Table 5 source 4) and other local per-
turbations and interactions may have longer-lasting ef-
fects in closed populations (e.g., lakes) than in open
ones. Special care is needed, e.g., in checking alter-
native explanations, if BACI methods are used in these
situations.

But it seems extreme to claim none of these models
is ever credible. It suggests that prediction is rarely
possible in ecology, unless from studies longer than
assessments, and that generalization over regions and
habitats are less feasible still. Experiments using
matched pairs of sites or halves of lakes seem pointless
if there is no more reason to expect similarity from
these pairs than from any other matching. Do any ex-
periments have value if the results are uninformative
about any other place or time? Efforts to determine
how environments affect species may also be pointless
if there is no sense in which, to the species, some pairs
of sites are more ‘‘similar” than others.

Whether and when covariate sites can usefully re-
duce the uncertainty in etfect estimates and improve
its measurement, which are most likely to do so, what
model forms are best, and the determination of appro-
priate study period length, are questions we regard as
open. Whether such models have been valid and useful
in the past might also be regarded as open, though we
believe they have (e.g., Murdoch et al. 1989, Bence et
al. 1996). To rule them out a priori seems unreasonable.

BACI “‘estimates effects on the mean only”’

Underwood (1991:569) describes the aim of assess-
ing changes on location parameters like means or me-
dians as ‘“‘oversimplistic and based on poor logic.”

The logic.—The BACI section derives this aim from
more basic ones. An “‘effect’ is the difference between
what will happen after the alteration and what would
have happened without it. Predicting this difference can
be almost the same task as estimating the difference
between the means. Thus estimated effects on means
can be justified as predictions of change in future val-
ues, or sets of future values.

Second, assessments are undertaken to help decision
makers weigh biological effects with economic, social,
aesthetic, and other environmental effects. BACI’s pre-
dicted change in future values addresses this need.
Weighing a 1% loss in local employment against a
predicted 30% loss in fodder fish (or a 40% loss in
summer and a 20% gain in winter) is hard, but this is
. because different kinds of effects do not have anm
agreed-on common currency. Weighing the employ-
ment loss against a 40% change in a parameter like
variance is harder because such parameters represent
more complicated concepts and their definition often
directly involves our ignorance: Is it a bad effect of
the alteration if we become less able to predict future
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values? Weighing the loss against a P value is yet more
difficult.

Third, means are easier to estimate than other dis-
tributional summaries, and more is known about the
properties of the estimates. In particular, problems of
robust estimation, bias, and correlated data have re-
ceived more attention in the context of estimating
means, location parameters, and future values than in
others.

A fourth point is that covariates can be helpful in
the estimation of means, but are less so in the esti-
mation of other parameters. In particular, Control sites’
may reduce the uncertainty in estimating a change for
the Impact site mean but not for other parameters.

We do not claim that effects on other parameters are
of no interest. An increase in the amplitude of popu-
lation fluctuations might be important, and interpret-
able enough to use in decision making. Even here, how-
ever, it may be better to focus on estimating the mean.
This need not be constant over time; e.g., it could be
modeled as a periodic function. The “‘effect” could be
a change in the amplitude from Before to After or the
fraction of time the mean is below some critical level.

We illustrate these general points by considering two
specific distributional parameters, extinction risk and
variance.

Extinction risk.—Local impacts rarely threaten glob-
al extinction of a species, but local extinction is of
concern, if unlikely to be quickly overcome by im-
migration. Thus a potentially useful goal is to predict
whether local extinction will occur before the time ho-
rizon, with and without the alteration. Since there is
almost always some chance of persistence, there seems
no alternative to assessing extinction by computing its
risk. However, extinction-risk estimates tend to be
highly model sensitive. Extinction may depend on
events that are observed too rarely for reliable esti-
mates of their frequencies. Models that behave simi-
larly when abundances are near mean levels may be-
have differently when abundances are extreme—con-
ditions observed too rarely to guide model choice. Ex-
tinction risk is difficult to define as a parameter mainly
describing nature rather than our level of ignorance.
Estimating the change in it may be less useful than
estimating the fraction of time the abundance will be
below a threshold level.

The variance.—Underwood (1991) suggests assess-
ing “‘the variance.” This needs definition; as Table 5
shows, temporal variation of observed abundances or
differences includes predictable and unpredictable
trends, cycles, and irregular events, as well as sampling
error. Some of these are better seen as part of the mean
function, and estimated from it. Others may themselves
vary in frequency or size over time, requiring frequent
sampling for reliable estimation.

Variance results may be hard to interpret. Under-
wood (1991) argues that variance is an indicator of

~extinction risk, but we have seen that this risk is itself
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hard to interpret. Also, its relationship with variance
is vague, controversial (McArdle et al. 1990), and un-
quantified, even when the ‘“‘variance’ is corrected for
sampling error (Stewart-Oaten et al. 1995).

Inference for variances is more difficult than for
means. It is so much affected by nonnormality that
Moore and McCabe (1993:557) advise non-experts not
to do it. The serial correlation, variable variances, and
uncertain models of time series are even more serious
problems than for means. It is also harder to use Control
sites or other covariates to reduce these problems.

We do not claim that variance effects should be ig-
nored but rather that they are hard to estimate reliably
and interpret clearly, and that some aspects, like the
amplitude of regular fluctuations, may be better esti-
mated from models of the mean function.

A variance change proposal.—Underwood (1991)
proposes a test to assess variance change. However,
without unrealistic simplifying assumptions, the ‘‘var-
iance” tested is hard to interpret and the test is likely
to be invalid. We describe several versions of this test
in the Appendix, but all are simple elaborations of the
first, Analysis 6(a), a two-sided F test comparing Be-
fore and After temporal variation. The ratio is s3./sdg
if there are Controls, and s{\/s% if not. Its validity and
interpretation depend on the distributions (especially
the means) of the s*’s (s34, etc.). These are functions
of random vectors like (/g,, /g», - - . , Ig7,), whose means,
variances, and covariances can vary among compo-
nents; .e.g., /5, and Iz, can have different means and
variances, and cov(/g,, I3,) may not equal cov(/g,, I3).
Thus the s¥’s estimate mixtures of systematic and
chance temporal variation, sampling error, and tem-
poral autocorrelation.

For example, the mean of s3; is

E(sh) = 2 (o = )Ty = 1)
+ 2 [0 + var{l}]/T,
-2 3 3 covi{ly, I}/ Tu(Ts — 1).

i<j

(16)

The first term is the sample variance of the means of
the abundance process at times tg,, f5,, etc. The second
is the averages over these times of the process variances
and the sampling-error variances. The third is the av-
erage of the covariance of censused abundances over
pairs of times, (g, g)).

The means of s33 and sp, are just as complex in
general. They may be simpler if some BACI-type as-
sumptions hold, but still mix temporal and sampling
variance. The simplest form of BACI Analysis 2(a)
assumes that the successive differences, Dy, have the

same mean and negligible correlation. If so, then
E{sps) = X [0fw + var(ly} + var(C)1/Ty  (17)

where o}y, is the variance of the difference between
the Impact and Control censused abundances at time
fs; and the Var’s are sampling-error variances.
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Underwood’s (1991) variance test compares an es-
timate of the right side of Eq. 16 or 17 with its “*After”
equivalent. Even if the test is valid, it is not clear what
a change in these expressions would mean, or how
much change would be cause for concern. Eq. 17 is
the simpler, but an *‘effect” could arise if either tem-
poral variation or sampling error is proportional to
overall abundance (at both sites), which undergoes a
natural Before—After change—the kind of long-lasting
variation that BACI attempts to reduce. The validity
of the test requires s} /spp Or siz/sf to have an F dis-
tribution under the null hypothesis. In standard cases
like ANOVA, this is derived from strong assumptions,
like constant means, variances, and sampling errors,
zero covariances, and Normality. When these do not
hold, as is likely here, the F distribution may be far
from the truth.

“Samples must be simultaneous”

The BACI design has been described as consisting
of paired samples, “‘in the sense that the Control and
Impact sites are sampled simultaneously (as near as
possible)” (Stewart-Oaten et al. 1992:1397). This un-
necessarily constrains the design, and leads Under-
wood (1991, 1994) to suggest that the design cannot
be employed if logistics prevent simultaneous sam-
pling.

The pairing is needed only to allow the Control value
to help predict the Impact value. Sampling close in time
will often do this best, but simultaneity is not needed.
Sampling earlier at Control might even be better if
organisms or environmental changes move mainly from
the Control to the Impact site (e.g., down a river).

As an alternative, Underwood (1991, 1994) suggests
sampling at times chosen randomly and independently
at Impact and Control, for analysis by two-way AN-
OVA. This misses the point of collecting Control data
in a BACI design: the reduction of temporal variation
to get useful effect estimates and the reduction of au-
tocorrelation to allow the variation to be measurable
by data from within a period. Without these, we are no
better off than in the Intervention Analysis case, where
we have only Impact data.

“Sampling times should be random”’

Underwood (1991) advocates sampling at random
times. Stewart-Oaten et al. (1986) suggested this be-
cause a fixed sampling interval might lead to bias by
coinciding with the period of a cycle, but they also
noted drawbacks to random times. Here we argue that
the statistical and logistical advantages of regular sam-
pling times will almost always override the small
chance of bias removal offered by random sampling
times. Underwood (1991:577) attributes regular sam-
pling times to ‘‘history, routine, fashion or lack of
imagination” or (p. 571) to contractors’ payment
schedules. In our view, regular times have obvious lo-
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gistical advantages and are statistically more efficient
and easier to analyze.

For a fixed number of sampling times, equal spacing
usually comes close to maximizing precision. Except
for small “‘end effects’ (cf. Fig. 2), it minimizes the
variance of the estimate of the mean for series with
variance constant and correlation a positive, convex
decreasing function of the time gap (e.g., an exponen-
tial decrease with time)—both standard assumptions.
Random times are usually inefficient in this sense, sam-
pling some time periods intensively but others sparsely
(see Bellhouse 1988). Equal spacing is often preferable
for checking and fitting a model for a time-varying
mean function with irregular cycles—Ileast likely to
miss some major feature, and most likely to give re-
liable function estimation by smoothing. For such rea-
sons, much of the theory of time-series analysis is
based on equally spaced times. For biological popu-
lations, ‘‘equal spacing’ may need broad interpreta-
tion, as the rates and frequencies of processes like
growth or disturbance may vary seasonally. One pos-
sibility is to view time as moving faster in some periods
(like ‘‘degree days™ in some population models), and
to sample more frequently at these times, albeit still
on a regular schedule.

The type of bias addressed by random sampling
times may arise only rarely. It is limited mainly to high-
frequency cycles whose period (or an integer multiple
of it) is equal to the interval that regular sampling
would use—usually less than one year. Except for di-
urnal cycles, this seems unlikely, especially for long-
lived species which are often the focus of monitoring
programs. Random times will reduce this bias by a

factor of about 1/V 7, (on average, over randomiza- -

tions) and give a more realistic variance estimate, but
the estimates must take explicit account of the times
actually chosen, and of their spacing: they would not
usually be the “X", “s?”” and “s¥n” of random sam-
pling. Random times cannot usually exchange ‘‘Be-
fore” and ‘““After” (see Granelli et al. [1990], for an
experiment of this kind), so bias due to a slow cycle
(e.g., a single peak in the Before period and a single
trough in the After) cannot be prevented this way. If
regular samples would be taken at several fixed dates
per year, the biasing cycle must shift phase, having its
After peaks at about the times of its Before troughs.
To adopt a complex, inefficient sampling program in
case it reduces such an unlikely bias seems a mistake.

BACI “‘cannot assess causes’’

Underwood claims BACI’s *‘lack of replicated con-
trol sites provides insufficient evidence for an impact
being due to the development™ (1992:175; see also pp.
148 and 151; 1993:102, and 1996:152-154). His claims
assume a single Control, which BACI does not, but
apply to all BACI methods, since none of them treat
Controls as replicates. IVRS methods do, so Under-
wood (e.g., 1992:176) claims they “provide better ev-
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idence of causal links’. This claim assumes that as-
sessments can be analyzed as experiments—e.g., “‘as-
sessment of environmental impact will only become
scientific when impacts are themselves treated as ex-
periments”’ (Underwood 1992:176) and “It is a pity
that previous planned environmental disturbances have
not been evaluated properly as experiments’ (Under-
wood 1993:111).

This is mistaken: real assessments cannot be treated
as experiments. The reason is fundamental: the Impact
site is not randomly chosen, either by humans or by
Nature, either from a population or from the sites used
in the study. We expand on this in the /VRS section,
below. Random choice forms the foundation of exper-
imental inference. Even when the units are not ran-
domly selected from a larger population (e.g., most
laboratory organisms), random assignment allows the
probability of any given result arising in the absence
of treatment effects to be calculated on the basis of the
collection of all possible assignments that could have
been obtained.

Lacking random choice of Impact site, an assessment
is closer to an observational study than to an experi-
ment. There are ways to strengthen causal inferences
from observational studies (Jeffreys 1961, Hill 1965,
Campbell 1969, Rubin 1974, Cook and Campbell 1979,
Rosenbaum 1984, 1987, 1995, Cox 1992), but no as-
sessment design or analysis can provide causal evi-
dence as strong as an experiment could. There are at
least three types of uncertainty associated with an effect
estimate: the formal uncertainty calculated from a mod-
el, uncertainty about the model, and uncertainty about
cause. In a sense, uncertainty about cause is already
included in the other two; if our model were correct,
it would allow for all sources of variation, so any dif-
ference not due to chance natural effects (whose size
limits are given by our confidence interval) must be
due to the alteration. But no model will be *“‘correct”
in this broad sense, e.g., allowing for such ‘“‘natural”
events as tsunamis or waste dumping. Most will esti-
mate natural variability only from variation within the
Before or After period, so will not allow for sources
of variation that do not affect these data. Analysis of
experiments can allow for such confounding factors,
by taking the data as fixed and basing chance only on
the randomized assignment. Nonrandom selection of
the Impact site prevents this in assessment.

IVRS (IMPACT vS. REFERENCE SITES)

IVRS uses observations at the Impact site and several
“Controls,” at one or more times in the Before and
After periods. In essence it summarizes all the data
from a site into a single number (e.g., average After
value — average Before. value) and bases uncertainty
measurement on variation among Control sites, rather
than over time. :

We first attempt an unambiguous formulation with
an appropriate definition of an “‘effect.” We then dis-
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cuss four possible justifications for the [IVRS method.
Three are design-based, and, in the terms of our Chance
section earlier, (see Intervention analysis and BACI:
Chance: Inferential “probability”. . ., above) they as-
sume device-based random site selection, “‘as if ran-
dom” selection by Nature, and approximate “*as if ran-
dom” selection. The fourth is model-based, treating
site values as a realization of a stochastic spatial pro-
cess.

In brief, we conclude that the first two are invalid:
device-based random site selection is known to be false
and ‘“‘as if random™ selection for this problem would
require all Controls to be identical to Impact. The third
can justify rough ‘‘expert opinion’’ effect estimates but
not formal inferences. The fourth leads to analyses
more complex than the ANOVAs of Group 3. It shares
features with time-series approaches such as IA and
BACI, but it has stronger assumptions, less opportunity
to check them, and less flexibility in modeling or effect
description. However, it may offer a way to assess an
impact without Before data, a situation where IA and
BACI are unavailable.

Design-based justification for IVRS

IVRS problem statements.—The most detailed ac-
count of how IVRS is to be set up appears in Under-
wood (1992:152). We have added the markers ““(A)”’
to “(E)” for reference.

“There should be a series of sites, randomiy chosen
out of a set of possible sites that have similar features
to those of the one where the development is being
proposed. (A) The only constraint on random choice
of sites is that the one planned to be impacted must be
included in the sample. (B) This is not nearly as dif-
ficult as it seems; the sites do not have to be identical

(C) They simply have to follow the normal re-
quirements that they come from a population of ap-
parently similar sites. ... (D) sites should be inde-
pendently arranged so that there is no great spatial
autocorrelation among them ... sufficiently widely
spaced that they are not correlated by processes of re-
cruitment or disturbances. (E) The logic of the design
is that an impact in one site should cause the mean
abundance of animals there to change more than ex-
pected on average in undisturbed sites. ... Impacts
are those disturbances that cause mean abundance in a
site to change more than is found on average.”

Sentence (D) highlights a major difference between
IVRS and BACI, whose aim is to choose sites that are
correlated (with the Impact site and thus likely with
each other) ‘““by processes of recruitment or distur-
bances.” Sentences (E) appear to regard any Impact
change greater than the Control mean change as the
“effect,” but the chance of such a.change is about 50%
without any alteration at all, if all sites are random.
The idea of randomly chosen sites suggests that the
intention is to treat the observed Impact and Control
sites as samples from ‘‘populations” of such sites, with
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the “‘effect’ defined as a difference between the pop-
ulations, and estimated by the corresponding difference
between the samples. This is reinforced by other pas-
sages elsewhere (Underwood 1992, 1993, 1994). We
are led to the following problem statement.

IVRS Problem Statement A: The observed Impact and
Control sites are random samples from two hypothet-
ical populations of sites, “Impact’ and *‘Control,”
which would be identical without the alteration. The
alteration’s effect is the difference between the popu-
lation means. Estimate it, with an uncertainty measure.

The “‘effect” could also be defined in terms of pa-
rameters other than means, e.g., variances, but we dis-
cuss only means here.

The “‘effect’ in the problem statement does not cor-
respond to the usual assessment target. Unlike most
scientific studies, the assessment task concerns *“‘a par-
ticular impact in a particular place from a particular
facility’” not the ‘‘average or ‘usual’ effect of an in-
tervention over a large population of possible instanc-
es’’ (Stewart-Oaten et al. 1986:930). There is no ““Im-
pact population.” Assessment is undertaken to provide
information useful for decisions about a particular fa-
cility, e.g., to require or permit design or operation
changes, impose penalties, etc. Knowing what this type
of intervention or alteration would do somewhere else
can be useful to help design a study in a particular
place or support a judgment about what has happened
there, but is otherwise irrelevant to these decisions. We
therefore reformulate Problem Statement A to address
the following assessment question.

IVRS Problem Statement B: The observed Impact and
Control sites are randomly chosen from the same pop-
ulation of sites. The effect of the alteration is the dif-
ference between the Impact site abundance After the
alteration and the abundance it would have had without
the alteration. Estimate it, with an uncertainty measure.

The basis for inference.—As discussed in the
““Chance’ section (see Intervention analysis and BACI:
Chance: Inferential *“‘probability”. . . , above), design-
based probabilities arise from the process by which
units are chosen for study or assigned to treatments.
Ideally, an artificial randomizing device makes the
choices, but sometimes ‘“‘as if random”™ selection by
Nature is assumed. Either way, each possible sample
or set of assignments should have an equal chance.
Model-based inference does not base chances on the
choice process. Instead, a chance model involving un-
predictable natural events is assumed to determine the
actual values of the units.

The BACI approach is model based: neither sites nor
times are randomly chosen. Some random selection
may be used in sampling within a given site at a given
time, but this is not the basis of inference. The basis
of IVRS quoted above seems to be design-based ran-
dom site selection, although passage (D)’s effort to
make sites independent, and comments elsewhere in
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Underwood (1992, 1993, 1994) about temporal inde-
pendence, suggest some model-based thinking.

The randomization argument.—Design-based infer-
ences are based on imaginary repetitions of the unit
(site) selection process, either random sampling or ran-
dom assignment. Random sampling assumes units for
each treatment are randomly chosen from the same
large population; inferences compare the hypothetical
populations that would be obtained by giving each
member the same treatment. Random assignment refers
only to the units actually used in the study. and bases
probabilities on the assignments that could have been
made. The former is equivalent to first randomly se-
lecting all the experimental units, then randomly as-
signing them to treatments. In this sense, random as-
signment is a weaker assumption. Some authors (e.g.,
Kempthorne 1975:322) justify standard analyses like
ANOVA only as approximations to randomization
analyses, seeing the ‘‘random selection’ assumption as
“usually completely ludicrous.” Others may accept
this assumption as an approximation justifying the use
of Normal theory, but concede that it is often “*difficult
to credit” (Mead 1988:230) so also view random as-
signment as necessary.

To illustrate the argument, suppose we have one Im-
pact site and 39 Controls. Each site has a value, e.g.,
Before average — After average. The Control values
are 2,4, ..., 76,78, and the Impact value is 77. If the
alteration has no effect at all, the chance that the Impact
site has a value of 77 or more is the chance that the
site chosen for the alteration was the 77" or ‘78"
site, i.e., 2/40. This is the P value for a one-sided test
of the null hypothesis of no effect. Doubling it gives
a two-sided P value. A 95% confidence interval for the
change would be all values of 8 for which the null
hypothesis ‘‘the alteration lowers abundance by 8" is
accepted by a two-sided test. For example. if the null
hypothesis is “‘the alteration lowers abundance by 6,”
and is true, then the Impact site would have been 71
without the alteration; the ‘‘true’ site values were 2,
4, ..., 78, and 71, so the chance of an Impact value
of 77 or more was the chance of choosing one of the
sites 71, 72, 74, 76, and 78, i.e., 5/40 (or 10/40 for the
two-sided test), and the null hypothesis is accepted.
Here, the 95% confidence interval is (=1, 75). The P
value is 2/40 for 8 = —1 (i.e., the alteration causes an
increase of 1) and 1/40 (*‘significant’) for any smaller
value; and is 2/40 for 8 = 75 (so the natural value of
the Impact site was 2, equal smallest) and 1/40 for any
larger value.

The only assumption made here is that each of the
40 sites had an equal chance to be ‘“‘Impact.” There
are some subtleties. The probabilities treat the values
as fixed: e.g., ““P{Impact =77}" is taken as ‘‘the prob-
ability that Impact is =77 given that the 40 site values
are 2, 4, ..., 77, 78.” This is inappropriate if the
alteration could increase sampling error without af-
fecting the “‘true’ value. Further complications arise
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in assessment experiments with multiple Impact sites,
and in experiments generally; e.g., the null hypothesis
may not include an effect that is positive at some sites,
negative at others, but zero on average (the “‘unit-treat-
ment additivity” assumption), and blocking, interac-
tions, and covariates need care. These and other knotty
points are explored by Kempthorne (1955), Cox (1958:
chapter 2), Scheffé (1959:chapter 9), Edgington (1987),
Welch (1990), Welch and Fahey (1994), and Manly
(1997), among others.

The IVRS ANOVA Analysis 3(a) needs a further
assumption, approximate Normality of (Impact — av-
erage of Controls). This is justifiable by an elaboration
of the central-limit theorem in an experiment when all
treatments (e.g., Impact) have large numbers of units,
and in some cases under weaker assumptions. There
seems no way to justify it for a few Controls and only
one Impact site except by basing inferences on stronger
assumptions, like random sampling from Normally dis-
tributed site values; in particular, the use of averages
over time does not justify Normality unless the vari-
ation in these averages is due mainly to temporal error
rather than site differences.

Random sites.—This randomization argument is val-
id in experiments (e.g., Lewis 1997), where assignment
of sites to ‘‘treatment’’ or ‘‘control’ is under the ex-
perimenter’s control. It is invalid for the assessment
problem because Impact sites for power plants, oil plat-
forms, sewage outfalls, breakwaters, developments,
etc., are virtually never chosen randomly. This is fatal,
not a mere ‘‘constraint,” as sentence (A) (see IVRS
problem statements, above) asserts. The argument de-
pends strictly on the process by which the sites were
chosen and assigned to treatments: its ‘‘chances” (P
values, etc.) are based entirely on imaginary repetitions
of this process. ““Apparently similar” (sentence C) has
nothing to do with it. With site assignment by a re-
peatable chance process, the argument is valid even if
the sites are scattered on land and sea all over the world,
or if a different variable is measured at each site, or if
some ‘‘sites’’ are not sites at all. Without the process,
the *“‘chance’ in the argument is meaningless, no matter
how similar the sites seem to be.

Thus IVRS is not an experiment but an observational
study where the Impact site is compared to a group of
sites the investigator thinks similar. BACI is an ob-
servational study too, but compares the Impact site to
its “‘no alteration’ self: the Controls merely help in
this.

If the Impact site is not random, there is no popu-
lation of sites from which it was randomly chosen. The
investigator must subjectively specify a population of
sites for “‘random’’ selection of Controls. This may not
be easy. BACI involves only a few sites which can
each be defined uniquely, but a ““population” needs a
generic definition or a long list. A crude marine ex-
ample would be to take each point on a stretch of coast
to represent the site obtained by going a kilometer up-
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coast, downcoast, and offshore. The numerous objec-
tions to this show how difficult the definition is likely
to be.

Given the population, random selection is easy in
principle (in the crude example, randomly select the
representative points) but the ““constraints’ of sentence
(D) above make it impossible in practice. True random
choices cannot depend on the results of previous choic-
es, but (D) requires that a choice too close to a pre-
viously chosen site must be rejected. Rare rejections,
as for sampling without replacement, might not matter,
or be allowed for in formulae, but no case has been
made that they would be rare. Thus IVRS *‘controls™
are nonrandom choices from a subjective population.

If an eccentric power company chooses its devel-
opment site randomly from some collection of sites, a
randomization test for an ‘“‘effect’”” would be valid if it
used the non-chosen sites as ““controls,”” no matter how
different they were. This is no guarantee of a good
assessment. Unless the sites are similar, power will be
low—the chance that the Impact site will be *‘extreme”’
with respect to a given species will be much the same
with or without the alteration. Also, the multiple testing
problem will be worse than usual: the Impact site is
likely to be ‘‘extreme’ with respect to at least one
species, with or without the alteration.

Representative sites.—Nonrandom, subjective con-
trols need not be worthless. Many medical studies com-
pare study groups to such contrels. The survival of a
group of smokers might be compared to that of a group
of non-smokers, or the level of factor X among patients
with disease Y might be compared with the level among
a reference group without it. These groups might con-
tain all students in a school, or all patients in a given
hospiral: no choice at all, except that some students or
patients might be excluded from the reference group
as being (subjectively) too dissimilar (e.g., in age) from
the study group. This method has obvious risks, despite
refinements like multiple reference groups, stratifica-
tion, matching (e.g., Mantel and Haenszel 1959) and
meta-analyses, but it is clearly useful.

For these studies, sentences (B) and (C) are correct.
The groups do not need to match each other exactly in
every respect. They need only be “‘as if random”” choic-
es by Nature from populations with the same distri-
butions of potentially confounding variables, those
which are not affected by the treatment (smoking or
disease Y) but are associated with the response (sur-
vival or factor X). But “only” is misleading. The need
for “‘apparent similarity’” with respect to these distri-
butions is a major change from genuine random selec-
tion. Full satisfaction seems impossible. For example,
a “‘significant™ test for a difference in one of the dis-
tributions can cast doubt on the “as if random™ as-
sumption. The difference need not be in the mean: a
confounding variable could have a nonlinear effect.
There are usually many possible confounding variables
and the important distribution may be joint, in two or
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more of them. It would be unusual if some of these did
not show significant differences. There may also be
other variables we do not know about. Thus the as-
sumption of “‘as if random’’ sampling is always subject
to doubt that is not reflected in formal uncertainty mea-
sures. Still, it can be a basis for useful inference when
it is plausible and satisfies reasonable checks.

However, IVRS is qualitatively different because
there is no ““Impact population’ other than the Impact
site itself. The distribution of any potential confound-
ing variable in this population allows only one value.
The distribution in the Control population can match
it only if all Control sites also have this value. Sentence *
(B) is now wrong: the sites do have to be identical for
every potential confounding variable. Sentence (C)’s
“‘apparently similar’’ must mean that any observed dif-
ference in one of these variables must be due only to
within-site measurement error, not between-site vari-
ation. We think this is never credible."

Almost-representative sites.—Representative con-
trols can be useful even if confounding variable dis-
tributions are not exactly identical. A medical study is
not discredited when a test finds a significant difference
in one of these, if the difference is thought unimportant.
This involves subject-matter judgment about the con-
founding variable’s likely effects, but can also be as-
sessed statistically, by comparing between-group var-
iation to within-group variation (Are the confounding-
variable values for the two groups well interspersed?),
or using the confounding variable as a covariate or to
define strata. If it is unimportant, then estimates and
even inferences (P values, standard errors, and confi-
dence intervals for the effect or factor under study) can
be regarded as good approximations.

IVRS results could be useful for the same reason,
but the justification is more difficult. It is needed for
all confounding variables, since all will have Control
distributions that are different from the Impact distri-
bution. It must also be mainly one of subjective judg-
ment. A developer might claim, in an ‘““After only”
study, to have chosen an Impact site “*well known’ to
be sparser than nearby ‘‘apparently similar’™ sites; or,
in a ‘““Before—After”” study, that the Impact site was
“well known” to cycle slowly and be due for a crash.
Without other evidence, we might accept the first claim
but not the second, based on our judgment and expe-
rience about the likelihood of such cases and the ability
of casual observers to identify them. We can check that
Impact values of quantitative confounding variables are
within the ranges of Control values, but this does not
account for possible interactions or nonlinear effects.
Using confounding variables as covariates or for strata
may provide only weak evidence, as they are likely to
outnumber the sites.

The different types of variation in the Impact and
Control ‘“‘populations’ makes bias checking hard and
formal inference meaningless. The variation among
sites in the Impact population is zero, while the Control
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variation depends on the investigator’s subjective de-
termination of ‘“‘apparently similar.”” If another inves-
tigator determined it differently, obtaining a very dif-
ferent population, there is no statistical way to judge
between them except range checking, which favors the
larger population. Inferences about effects (P values,
variances of effect estimates, confidence intervals,
power calculations) will depend mainly on the number
of “*Control™ sites and the variation among them, i.e.,
not on inherent natural variability but on the investi-
gator’s judgment about how close “‘apparently similar’™
should be.

An exception arises when effects are diffused among
a variety of sites, as occurs with oil spills and other
accidents. These may need some form of IVRS, since
the Before data may be inadequate for IA or BACI.
The affected region consists of many sites, of which
only a sample is seen. An Impact “*distribution’ of a
confounding variable is now nontrivial; in fact, the
Impact region might be stratified by some suspected
confounding variables, and sets of Control regions cho-
sen to match them (Peterson et al. 2001). The ‘‘almost
representative’’ justification could apply to these Con-
trols, although it would not cover variables (e.g., cur-
rents) that caused a site to be affected (e.g., oiled).

Repeated measures.—Repeated-measures methods
are applied to data taken on the same units at a series
of times. Although samples of units can be compared
by collapsing the data over time, to yicld one value per
unit, methods that retain the information in the separate
sampling times can sometimes be more efficient (pow-
erful), at the cost of assumptions about temporal cor-
relation. 2

Assessment data, with Impact and Control samples
of units (sites), may appear to fit this description. Green
(1993) has suggested repeated-measures ANOVA
(Crowder and Hand 1990) as a suitable method. This
requires a ‘“‘sphericity’’ assumption (roughly, correla-
tions not to depend on the time gaps between obser-
vations) that is unlikely to hold, or an approximate F
test with reduced degrees of freedom. However, there
are also more general methods for “‘longitudinal data™
(Diggle et al. 1994).

While both deterministic and stochastic variation
within units (sites) is often modeled, the inferences on
treatment effects in all these methods are design based.
The units (sites) must be independent and randomly
assigned to treatments—the ‘‘random sites’ assump-
tion discussed previously. The methods can also be
applied to ‘“‘as if random™ treatment groups, but the
assumption that confounding variables have the same
distributions in the parent populations is still needed
and still false in most assessments.

Longitudinal data methods are appropriate for ana-
lyzing an experiment, e.g., where a set of reefs is ran-
domly divided into treatment (oil) and control groups,
as may have been intended by Green (1993). Provided
the oiling of one reef has no effect on others, the ran-
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domized assignment can justify ignoring the spatial
correlation. In some cases the “‘as if random’ argument
might justify these methods for the diffuse impacts of
the previous section.

Model-based justification for IVRS

Treating the IVRS “*Controls™ as quasi-random rep-
resentative sites can justify little more than approxi-
mate effect estimates with subjective measures of un-
certainty, yet something like IVRS may be the only
choice when Before data suitable for BACI are un-
available. Glasby (1997) discusses this case (with mul-
tiple Impact sites) thoughtfully, although the above ob-
jections to IVRS apply also to his use of it. In this
section, we sketch some aspects of using modeling to
get more reliable conclusions.

Spatial models.—As before, the main idea is to com-
pare the Impact site after the alteration to an estimate
of what it would have been like without the alteration.
The Controls are used to help estimate the latter. In the
IVRS version, each observed site yields a single num-
ber, like the average of ‘‘After only’ data, or After
average — Before average. The effect of the alteration
is the difference between the Impact value, which is
affected by the alteration, and its prediction based on
the Controls, which are not.

In spatial prediction and interpolation there is a value
associated with every point on a map. We know the
values at some points (Controls), and want to estimate
the value at another point (the “‘no alteration’ Impact
value). The IVRS approach uses the average of the
Control values as the prediction, with error estimated
by their variance. This is a candidate, but it treats all
sites as equally likely to be accurate. It ignores position
as well as any special characteristics of the sites.

More often, the estimate is derived from a model
including a chance term arising from natural processes
and sampling error. Unlike design-based inference,
imaginary repetition of the site-selection process plays
no role in this chance term. Instead, the actual positions
and other features of the sites are used as fixed terms *
in the model. The entire map’s set of values, of which
we observe some points, is treated as a ‘‘random func-
tion,” one of a population of possible sets, with cor-
relations between site values being functions of their
positions (e.g., sites nearer in space are likely to be
nearer in value). Under assumptions similar to those
for time series, variances and covariances of site values
can then be estimated from the data (Ripley 1981,
Isaaks and Srivastava 1989, Cressie 1991, Aubry and
Debouzie 2000).

There is a difference between interpolation and pre-
diction like that between the censused abundance and
the underlying process or between estimating a mean
and predicting a future value. The interpolated value
and the prediction are often the same, but the latter is
less accurate because there is an extra layer of uncer-
tainty in its target. Aubry and Debouzie (2000) explain
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the distinction as between conditional and uncondi-
tional estimation, and give ways to compute the un-
certainties (variances). For assessment, prediction (un-
conditional estimation) is needed. The interpolation es-
timates the difference between the “‘alteration” and
“‘no alteration” censused abundances at a particular
time, or the average (or other summary) over the sam-
pled times during the study period. This is itself only
an estimate of the ‘‘true effect,” which averages the
difference over the period to the time horizon of in-
terest, most or all of which is unobserved.

Selecting a reference group.—In model-based IVRS,
as in BACI, the reference sites estimate what the Impact
site would have been like. To do this, they should reflect
the natural variation at the Impact site as closely as
possible, without being affected by the alteration. Thus
sentence (D) at the start of this section (see Design-
based justification for IVRS: IVRS problem statements,
above) is what we do not want in the model-based
approach. Instead, we want unaffected sites that are
near enough to experience the same conditions, and
similar enough to respond to them the same way. For
ocean species that recruit from the plankton, we want
the recruitment process between Impact and Control
sites to be as highly correlated as possible. The same
applies to disturbances. There may be small alteration
effects on the Control sites, e.g., if the Impact site
contributes to their recruitment pool, or predators move
to them when prey become scarce at the Impact site.
Such “‘effects’ are usually negligible.

“Similarity”” of sites is hard to define, since many
possible confounding variables could cause response
to natural events to be different. In marine settings,
depth, slope, aspect, relief, substrate, grain size, runoff,
turbulence, current, and upwelling patterns are all can-
didates. Human use is often another. Some key vari-
ables may be hard to compare without thorough search,
e.g., presence of major predators like lobsters or oc-
topus.

Some problems in model-based IVRS.—Kriging and
other spatial-prediction methods can be highly sensi-
tive to model assumptions, which may be based more
on tractability than realism. Most models assume sta-
tionarity and isotropy. The first means that patterns
among sites depend only on their relative positions;
e.g., the model correlation between any pair of sites
depends only on the length and direction of the line
joining them. Isotropy means the direction can also be
ignored. These are often implausible for biological var-
iables. Two sites in the same bay (or indentation) will
often be more similar than sites in different bays, even
if the latter are closer together. Along-coast and off-
shore variation often differ, perhaps too much for stan-
dard anisotropic models (e.g., Isaaks and Srivastava
1989). Journel (Isaaks and Srivastava 1989:xi) notes
widely different conclusions drawn from the same data
set by leading geostatisticans: “‘the illusion of objec-
tivity can be maintained only by . . . scientific bullying
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in which laymen are dismissed as incapable of under-
standing the theory and ... disqualified from ques-
tioning the universal expertise written into some cryp-
tic software package.”

This comment applies to other statistical methods,
including time series. It is why avoiding statistical jar-
gon and complex mathematics in discussing concepts
is important scientifically, and why it is useful to com-
pare effect estimates from several plausible models, in
spatial prediction as well as in BACI. There is no nec-
essary cause for alarm when different “experts’” make
different predictions, but there is cause when the ex-
perts’ predictions (and the actual values being pre- ’
dicted) are far outside each other’s allowances for un-
certainty.

A variety of models can be produced by fine-tuning
such details as functional forms for variograms. (These
give the average squared difference between the values
at pairs of sites distance d apart as a function of d.)
However, we suspect that prediction errors will often
stem more from differences between sites in their his-
tory (e.g., “founder effects’’) and special features
(depth, substrate, etc.) than from the details of spatial
models. Thus a useful form of multiple models is mul-
tiple sets of reference sites. We suggest two types. One
uses stratified sets, i.e., sites are similar within sets but
dissimilar between sets, based on potential confound-
ing variables. Dissimilar predictions might suggest the
use of covariates. The other is cross-validation, using
roughly similar sets, e.g., chosen from the full collec-
tion of Controls by restricted randomization, to ensure
a mixture.of site types and some spatial interspersion.
Predictions made by these sets should be within each-
other’s allowances for uncertainty. The predictions
could also be treated as a sample to help establish the
uncertainty allowance. A related way to check model
assumptions is to use some Controls to predict others.

IA vs. IVRS: a tale of two series

We have shown that model-based IVRS can lead to
meaningful inferences. It is sensitive to some strong
assumptions, but IA and BACI also use models based
on assumptions. Some direct comparison seems appro-
priate.

The series.—We consider the special case of IVRS
where sites differ only in their along-coast positions—
e.g., they are all the same distance offshore, covering
the same range of depths. This removes the need for
the isotropic assumption. If each site’s observations are
summarized in a single value, like After mean — Before
mean, the data will have the appearance of a time series,
with “‘time” being site position. The main difference
is that the ordering of spatial position (e.g., increasing
as we go upcoast from Impact) does not correspond to
the order of cause and effect. IVRS compares the value
at the Impact distance with the prediction based on the
reference distances.

We compare this with IA, treating BACI as a special
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case of IA with covariates. IA compares the After times
at the Impact site with predictions based on the Before
times. [A and IVRS use different data, so represent
alternative study designs rather than analyses. We com-
pare the usefulness and reliability of results, but they
also differ in cost and feasibility of data collection. In
their minimal versions, [A needs only one site but sam-
ples it many times, while IVRS needs only one sam-
pling time but samples many sites. IA is restricted by
the length of the Before period, and IVRS by the dis-
tance from the Impact site at which potential ‘“*Con-
trols” become uninformative.

Similarities and differences.—Both approaches re-
quire chance models, so that observations at each set
of points (times or distances) have a specified joint
distribution. Both use assumptions based on subject-
matter consensus, simple approximate models of mech-
anisms, and mathematical convenience. However, there
are differences. For IA, we have tried to describe the
kinds of events and natural fluctuations that make up
the “‘chance” and to give examples. These descriptions
are used to establish the plausibility of simple models.
This is harder for the distance series. A chance event
occurring at a given place may affect sites on either
side of it, while an event at a given time affects only
later times, so building a model from a sequence of
general cause—effect mechanisms is easier for a time
series than for a spatial “‘series.”

Abrupt changes, which separate the series into dis-
tinct parts, seem more common for distance series than
for time series. Times have few distinguishing char-
acteristics except for position, which can be adequately
accounted for, often by the correlation alone and nearly
always by correlation, a linear or quadratic trend, and
one or two cyclic functions with known periods, like
a day or a year. (Y2K may be an example of a *“‘special”
time.) Distances (sites) have many distinguishing fea-
tures, such as aspect, substrate, etc. This makes sta-
tionarity assumptions more plausible for IA than for
IVRS.

In particular, a time-series model that accurately de-
scribes a long-enough Before period at the Impact site
should also accurately describe the After period, if
there were no alteration. No brief Interim is likely to
coincide with a natural division of the history of the
Impact site into distinct periods and, while not chosen
randomly, the Interim usually arises haphazardly from
events in the planning, financing, permitting, or con-
struction processes. But a model that describes the Con-
trol sites could easily fail to describe the Impact site,
which is usually chosen carefully and may be unlike
any other site. Similarly, all observable times are rel-
evant for IA (with modifications for seasonal organ-
isms); i.e., all can be incorporated into a single model
with a small number of unknown parameters. Only sites
satisfying guessed reference-set criteria are relevant for
IVRS; these guesses could be wrong, and there may
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even be no site satisfying the right criteria except Im-
pact itself.

Both approaches can use physical and chemical co-
variates to help predict what the Impact site would have
been without the alteration. IA uses the Before times
to construct and fit the prediction equations. IVRS can
use the Control sites for this. Again, a model built by
fitting the Before times is more likely to fit the After
times than is a model built by fitting the Control sites
to fit the Impact site. IA can also use other sites as
covariates (BACI); there seems no simple analog for
IVRS to use times as covariates.

Models can be checked against the data more easily
and thoroughly in IA than in IVRS. Both can check
assumptions by predicting some subsets of the data
from others—IVRS by comparing subsets of unaltered
sites, IA by comparing subsets of Before times. BACI
can do both. These comparisons can include mock as-
sessments, since there is known to be no alteration
effect on either subset. IA can also use subsets of the
After period to check assumptions or aid description
of varying effects. IVRS cannot *‘subset’” the Impact
site. In part, IA has more model checks because it has
more models to check, due to its greater flexibility, but
this gives more realistic estimates of uncertainty, and
the consistency of “‘effect’ estimates across models is
itself a check.

IA can estimate summaries of the After period, like
the long-term mean, and compare them with the actual
values after the alteration. These values have the ad-
vantages of averaging: smaller variation from both tem-
poral correlation and sampling error, a more tractable
distribution (e.g., Normal) for the errors, and perhaps
rejection of outliers. IVRS compares the value at a
single point, the Impact site, to its prediction from the
Control points, so lacks these advantages. [A can also
focus on means for given seasons or conditions, aiming
at a more detailed description of an alteration effect
that varies. IVRS could also be applied to values ob-
tained from different subsets of Before and After times
to describe a varying effect. However, IA is based on
a model describing temporal variation, so its predic-
tions (or estimates of the mean function) for future
After times can use data from all times, with the usual
gains in precision and tractability. IVRS must use sets
of “*similar’ times in isolation, unless its model is elab-
orated to include temporal variation and correlation—
i.e., unless it becomes more like IA and BACL.

DiscussIioN

We have compared two approaches to impact as-
sessment. One is Intervention Analysis (IA, Group 1),
which compares Before and After time series, perhaps
with the help of covariates. Before—After, Control-Im-
pact (BACI, Group 2) is a special case of IA, where
the covariates are similar unaffected sites. The other
approach is impact vs. reference sites (IVRS, Group
3), which compares an Impact site value, such as the
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TABLE 6. Suggested approaches to impact assessment. The suggested approach depends on

the problem and the time series available.

Time series available

Suggested
Impact site(s)T Before Controls approachi
Specific Yes No IA .
Specific Yes Yes BACI
Specific No Yes Model-based IVRS
Diffuse No Yes Longitudinal
Experimental Either yes Yes Longitudinal

or no

+ “Specific”” means that effects on a particular Impact site are wanted. **Diffuse” refers to
the scattered sites that might be affected, e.g., after an oil spill or other accident. **Experimental’’
refers to a study on a set of sites of which a random subset is altered.

i IA = Impact analysis; BACI = Before-After, Control-Impact; IVRS = Impact vs. reference
sites; ‘‘Longitudinal’ refers to analyses described by Diggle et al. (1994), including repeated-

measures analyses.

difference between the means of the Before and After
observations, to the corresponding values from a set
of Controls.

For IA and BACI, the error in the effect estimate
arises from sampling error and temporal variation in
the censused abundances, and is estimated by variation
over time, allowing for serial correlation and covar-
iates. For IVRS, the error also includes spatial varia-
tion, and is estimated by variation among sites.

Frequentist probability is based on hypothetical rep-
etitions of processes whose outcomes vary unpredict-
ably because of our ignorance of starting conditions
and of the physical world. We make explicit the pro-
cesses on which IA, BACI, and (according to its claims)

"IVRS are based. IA and BACI can be described as
model-based approaches while IVRS has been design
based.

Design-based inference assumes ‘‘random’ choices
of units—assignment to treatments in experiments, or
selection from a population in surveys or observational
studies. P values and confidences are derived from as-
sumptions about hypothetical repetitions of the choice
procedure. These assumptions are most credible when
a physical randomizing device (coin, computer, 2tc.) is
used, but Impact sites in real assessments are almost
never chosen this way. ““As if random™ choice pro-
cedures by “Nature’ are less credible, though tenable
in studies where distributions of potential confounding
variables can plausibly be assumed the same in the
populations being compared. They are not tenable in
assessment, where inferences concern the specific Im-
pact site only: the ““Impact population’ has only one
member, so Impact and Control “‘distributions’” can be
the same only if all Controls have exactly the same
confounding-variable values as the Impact site. Expert
judgment of ‘‘nearly’ the same can give comfort but
not (frequentist) confidence without an explicit, objec-
tive way to incorporate the discrepancies.

Model-based inferences are derived from a model of
the process producing the unit’s value, rather than se-
lecting the unit. IA and BACI model the abundance
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path at the Impact site as a time series arising from
deterministic and stochastic components, with the latter
occurring frequently enough during the observation pe-
riod for variances and covariances to be estimated.
Thus the model connects past abundances to future
ones, and allows hypothetical repetition of process
components, and hence of the process.

We summarize our recommendations in Table 6. The
usual assessment goal is to describe differences, e.g.,
in abundance paths, between what has happened or will
happen at the particular Impact site and what would
have happened without the alteration. IA and BACI
can estimate such changes, and summaries of them,
and measure the reliability of these estimates. Both
require time to collect adequate Before data. IA needs
no Control sites to be useful (e.g., Box and Tiao 1975).
BACI is a special case whose possible benefits depend
on how much temporal variability can be reduced by
using data from one or more Controls as covariates. In
some cases it might reasonably be argued that other
types of physical, chemical, or biological covariates
achieve more or cost less.

Some criticisms of the BACI approach arise from
misunderstanding, especially of the role of BACI
“Controls.”” Effects are not defined as Impact—Control
contrasts, nor is uncertainty measured by variation
among sites. The Controls are chosen deliberately to
be correlated with the Impact site but unaffected by the
alteration, and used as covariates to reduce unexplained
temporal variation and serial correlation. Multiple Con-
trols are not needed and may not be helpful in this, but
can be useful for insurance, model checking, and causal
assessment. Comparing future Impact-site values to
what they would have been without the alteration may
reduce to comparing the mean functions of models, or
summaries of these functions. Attempts to compare
other parameters, like variances, face interpretation and
validity problems.

The design-based inferences of ANOVA-based IVRS
are untenable in real assessments. If Before data are
insufficient for IA or BACI, a modified version of IVRS
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could base inferences on a spatial model that uses the
Controls to predict ““no effect’” values at the Impact
site. The model and analysis are likely to need strong
assumptions and be more complex than [VRS ANOVA.
IVRS, especially longitudinal analyses, can be used in
experiments where “‘impact’ and “‘control’’ treatments
are randomly assigned to sites. Similar analyses can be
used when there is little Before data and impact sites
are scattered and mixed with *“‘controls;”” but this as-
sumes ‘“‘as if random’ sampling, so is misleading if
the impact sites have been ‘“‘selected™ (e.g., in an oil
spill) because of special features not shared with the
controls.

Inferences in real assessments will be model based,
and all models use assumptions. They can be checked
against biological knowledge and the data, but no mod-
el is “‘correct” and several plausible models may give
adequate fits. This adds uncertainty. Model uncertainty
is not usually covered by formal inference and it is not
clear how to quantify it (but see Burnham and Anderson
1998). It may be better kept separate, since the basis
of quantification in formal inference (relative frequen-
cy in independent trials) may be unsuitable for model
uncertainty. There may be ways to bound model un-
certainty, e.g., it should be smaller if different models
give similar answers than if only similar models do.
But unambiguous definitions of ‘‘similarity”® among
models, or of whether a group of models ‘“‘surrounds”
the true model, remain a challenge.

We have avoided details of specific models, and ad-
vocate a flexible approach to modeling temporal and
spatial variability. However, the data will rarely be suf-
ficient to justify elaborate prediction functions, f, in
models of the form Impact = f{Controls) + error. Mod-
els derived from simple mechanistic arguments, linear
models with Controls combined into subgroups, or ob-
tained from these by transforming all abundances (e.g.,
logs), may be all the data will bear. The same applies
to models of the error; e.g., ARMA (autoregressive
moving-average) models have simple structure, make
intuitive sense, and are nested, allowing the strength
and complexity of serial correlation to be examined,
within the limits imposed by the length of the study.

A subtext of this paper is that mistakes arise from
rote use of standard methods. ANOVA is a common
villain. Rote use reduces efforts to assess assumptions,
inquire where the ‘‘chance’” comes from, check mod-
els, explore sensitivity, and interpret parameters and
results. Rote methods can also answer the wrong ques-
tion: ANOVA is often treated as only an F test for a
““difference,” but effect sizes and patterns may be
needed, with measurements of reliability and model
uncertainty (Stewart-Oaten 1996b).
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APPENDIX
DETAILS AND SOURCES OF IVRS TESTS

Here we give the sources of our IVRS (impact vs. reference
sites) descriptions, show our ¢ formulae are equivalent to
Underwood’s ANOVA formulations, and describe some am-
biguities we had difficulty resolving. We also describe Un-
derwood’s (1991) variance proposal and its sources in more
detail than in the Response section of the main text. Notation
is as in Table 1 and Table 4.

We have dropped Underwood’s assumption of equal num-
bers of Before and After times for all but one of these tests.
Most of them are invalid, for reasons given in the text, but
the assumption would not be needed if these reasons did not

apply.
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N Three Equalities

The equivalencies follow from these equalities:

1) The square of a #, (where:¢, is a variable having the ¢
distribution on k degrees of freedom) is an F,,, i.e., the F,,
variable X?*/ms is the |1, variable |X|/VMs.

2) Time X Site interaction sums of squares involving a
single Impact and several Controls can be partitioned into a
ss for the Controls only and one for the difference between
Impact and the Control average. If site S, = Impact, so S,
= Ip;, and sites S,, S, . . ., are Controls, so S;.,p; = Cyp;, then
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zi: ; (Sisi — Sis. — S + S.5.)2

= (Tg — Dspe/(1 + 1/N)

+ (Tg = DWW — 1)s3;.

Dividing each term on the right by its df (de
dom) and taking the ratio gives

Fpc = sb/(1 + 1NQ)s,.

(A.1)

grees of free-

(A.2)
With independence, equal variances, and Normality—each
of which we dispute—this has the F distribution on Tk
and (7y — 1)(Nc — 1) df. The After period partitions similarly.
3) Period X Site interactions can also be partitioned. With
the same notation for sites,

}z‘, Z (Sip. = Sp. = Sep. + 8.2

= fl(di = dc)*/(1 + UNS) + 3 (dey — de.)?] - (A3)
where f = (T3 + T3)/(Tz + T,)> The F ratio of the two parts
of this partition is:

Fue = (dy — dc) /(1 + 1/NQ)s? (A.4)

on 1 and (Nc — 1) df. This is the square of the ¢ statistic (d,
= dc)IsgV (1 + 1/Ng). It has the ¢ distribution (and F has
the F) if the d’s are independent and Normal, with equal
variances—each of which we dispute.

Group 3. Changes in mean, using spatial variation
for error

The following letters refer to the same letters in Interven-
tion analysis and BACI: ANOVA-based analysis: Group 3.

a) The sources of our descriptions of the IVRS procedures
are: for one time per period: Underwood (1992: Table I, foot-
note b); for multiple times per period: Underwood 1992: Ta-
ble II, footnote e, and presumably Table V; 1993: Tables 5—
8; and 1994: Table 4 and presumably Table 2). Underwood
(1992: Table III) gives this test for different times (though
equal numbers of them) at different sites.

In all cases, Underwood’s “B X I'" and “B X C” are
converted to a ¢ ratio as in Egs. A.3 and A.4.

b) The source is Underwood (1992: Table VII). To describe
this, we imagine an “‘Impact bay’ and a set of “‘Control
bays,” with the Impact bay containing an Impact and a set
of Control sites. The first level compares the Impact site to
the Control sites in the Impact bay; the second compares the
Impact bay to the Control bays.

For the first level, the source is Item 1b(2), line 3 (in Table
VII). This is scrambled: it should read **ms B X S,(Im) vs.
O(Im)/mMs B X O(Im).”” These are the two terms of Eqs. A.3
and A.4 using only the sites in the Impact bay. This zest is
carried out only if

(1) rs3/(1/Tg + 1/T,)s} is significant (Item 1b(2), line 2; see
Group 4 (b), below),

(2) the variance tests in Group 6(c) 1: First level, below,
are nonsignificant (Item la);

(3) s3(X, sz/Ng) is nonsignificant, where s? = the variance
of After—Before differences for the N. + 1 sites in Control
bay k(= 1, 2, ..., Ng, the number of these ‘‘external’’ bays).
This is Item 1b(2), line 4. With E,, 5, = Before observation
i at site m in Control bay k and d,,, = E,,... — E,,p.. it comes
from partitioning ss “B X S(L),”” which uses X, 2, (dy, —
d.)? = 2, N:S;. ‘B X S(Im)” uses only the first term, cor-
responding to the Impact bay (k = 0), and “B X S(C)" uses
the others, for the Control bays. ““B X O(Im)"’ is the second
term of the partitioning of *‘B X S(Im)’’ as in Eq. A.3.

For the second level the source is Item 2b(2), line 3: “B
X I"" and “B X C” come from “B X L’ as in Egs. A.3 and
A.4. This is like the first-level test, but replaces /p,, the Impact
site value, by Sp; = (Ip; + 2, Cop)/(Nc + 1), the average over
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sites in the Impact bay, and the N Control site values, C,p;,
by the Ng Control bay averages, E,.p. The test is carried out
o;\lv if all first-level tests and all variance tests in 6(c) below
(itc'm 2a) are nonsignificant, and (N + Drsg/(1/Ty +
1/T)s3 is significant (item 2b(2), line 2), where s, is the
sample variance of {dgx = Eia. — Eip.} over Control bays.

¢) The source is the ““B X L line of Table 1b of Underwood
(1994: Table 1b).

d) ‘“‘Repeated-measures” ANOVA is mentioned by Un-
derwood (e.g., 1993: Table 1), and outlined by Green (1993).

Group 4. Changes in mean, using residual variation
for error

a) For a single Before and single After time at a single
Control, the source is Table 1b of Underwood (1991). The
confidence interval can be written as D, — Dy + 2tsg/V'r,
where the D’s and s are given in Tables 1 and 4, with Ty =
T, = N = 1. For multiple Controls, the sources are footnote
b of Table I (with Ty = T, = 1), footnote d of Table II, and
“B X I of Table V of Underwood (1992); and “B X I of
Tables 5-8 of Underwood (1993) and of Table 2 of Under-
wood (1994). The “between vs. within sites™ restriction is
“B X C vs. Residual” in the first two 1992 Tables (the second
of which also requires nonsignificant tests for variance
change), and may be intended in the other Tables also.

b) For the first level (the Impact site in the terminology
used for Group 3(b) above), the source is Underwood (1992:
Table VII: Item 1b(1)) and for the second level (bays), (1992:
Table VII: Item 2b(1)). The numerators use the first term of
Eq. A.3 in partitioning the sums of squares for

“B X SAm)” = > D> (Up. — Up. = Up. + U.L)?

where the U’s are the site values in the Impact bay: k& = 1
gives the Impact site; and

RSO = N Wi — Vo — Vi + V)2

where the V’s are the bay averages. In the notation introduced
in Group 3(b) above, k = 1 gives the Impact bay (V,p; = Sp,),
and the rest give the external bays (V. p = Eip, fork =1,
2y o nins R

The F ratios are r(d; — dc.)*(1/Tg + 1/T,)(1 + 1/N)si for
SSS B O CO(Im)™ - and SN+ NS, — Sao s (B
E.p))(1/Tg + UT)(1 + 1/Ng)s} for “ss B X 1. These di-
vide squared ‘“‘effect” estimates, d; — dc. or S,. — Sg. — (E....
= Ep), by their variances, (1/T3 + UT)(1 +
1/N¢)sk/r or (1/Tg + U/T)(1 + 1/Ng)SE/r(Ne + 1). For ex-
ample, S,. averages T, times, each the average of No + 1
sites, each the average of r replicates, so S,. has variance %/
rTo(Nc + 1). E..,. averages Ng such averages, so has variance
o2/rTANg(Nc + 1). The Before variances are similar, so the
variance estimate of S,. — Sz. — (Baa. — E.p) is (1/Tp +
UT,)(1 + VUNgsg/r(Ne + 1).

The first-level test is carried out only if the first-level var-
iance tests in Group 6(c) below, and the test of rs¥/(1/Tg +
1/T,)S% are nonsignificant. The latter is “mMs B X O(Im)/Ms
Residual.” Its numerator ss is the second term of the partition
in Eq. A.3 for the interaction between periods and sites in
the Impact bay. The second-level test is carried out only if
all first-level tests, the second-level variance tests in Group
6(c), and r(Nc + 1)S2/S3(1/Ty + 1/T,) are all nonsignificant.
The last uses ““Ms B X C/ms Residual:’’ its numerator Ss is
the second term of the partition in Eq. A.3 for the interaction
between periods and bays.

Group 5. Changes in mean, using temporal variation
for error

a) The sources are: for Impact site data only, Underwood
(1991: Tables la and 3); for Impact and one Control, Underwood
(1991: Table Ic, and 1994: Table 1a); and for Impact and several
Controls, Underwood (1994: Table 3).
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b) For a single Control, the source is Underwood (1991:
Table 1d). The “B X L’ Ms is G2/ Tgp)(Ip. — Ig. — Cp. +
Cg.)? and the “Times (B X L) Ms is [2X([p; — Ip)? + 22(Cyp;
— Cp))/[22Tsp — 4], where S = [ or C and T, is the number
of times site § (= / or C) was sampled in period P (= B or
A). The Tgp's do not need to be equal: the validity of the test
depends mainly on the (unlikely) absence of serial correlation.

For multiple Controls, the source is Underwood (1992:
Table III: note b). “B X I'" is the first term in Eq. A.3. It
may be that “7T(B X C)” is a misprint for “7(B X L).” If
50, .82 “cbecomes SE. =2, — LR+ SR I(Cup —
CoPWE Tp + 2 3 Tp — 2N — 2), i.e., it uses the Impact
site as well. Equal 7}p’s and Tjp's are unnecessary except for
this alternative. The test is not carried out if si/s} =
“Ms B X C/ms T(B X L) is significant; Group 3(a) is used
instead (Underwood 1992: Table III: note ¢). *'ss B X C is
the second term in the partition of “ss B X L as in Eq. A.3.

Group 6. Tests for changes in temporal variance

These tests do not appear in the Analyses section, but are
discussed in the BACI: Response to comments section. Here
we give each test or set of tests followed by its source.

a) A two-sided F test comparing Before and After temporal
variation. The ratio is sja/spg if there are Controls, and
sta/sfs if not. With multiple Controls, ‘‘detection’ may be
declared only if such changes do not also occur among them:
spa/(1 + 1/Nc)st, is significant and s&,/sZg is not, where
e =33 (G~ Cino= O+ CalliNa — 1)(Ts = 1)y the
Time X Site interaction for Control sites in period P.

For Impact data only, the sources are Underwood (1991:
Fig. 2c and Table 3: T(P Aft)/T(P Bef) (but with only one
“‘Period™). For a single Control, the source is Underwood
(1991: Table lc: footnote B). ““C X T(B)”’ should read ““L
X T(B),” and uses 2p 2; (Ipy = Cpy — L. + Cp)2 = 2 3 (D
— Dp.)* For multiple Controls, the sources are: Underwood
(1992: Table II: footnote c(ii) and Table V (second last line));
Underwood (1993: Tables 5 and 6 (top, second left box));
and Underwood (1994: Table 4, second to last line). ““T(Bef)
X I uses (I — Cp; — Ip. + Cp)?. The requirements on
spa/(1 + 1/Ng)st, and sg,/s2g are in Underwood (1992: Table
II: footnotes c(i) and c(ii)) and Table V: last line, 1993: Tables
5 and 6 (top two left boxes) and 1994: Table 4: last and third
last lines). “T(Aft) X I'" and “T(Aft) X C’" are obtained as
in Eq. A.l,

b) An F test comparing temporal variation in the After
period to sampling variance, s§. If there are no Controls, the
F ratio is rs./si; otherwise it is rspo/(1 + 1/N¢)si. The first
presumably ‘‘detects™ an effect only if the test on rsf/sg was
not significant. The second may also require one or more of
(1) rspg/(1 + 1/Ng)sg and the Control ratios (2) rsZ./si and
(3) sa/s2g to be not significant and possibly (4) s3,/s3s to be
significant.

The source for rsi/s; is Underwood 1991: Table 3 (the
middle ‘‘Residual’ entry under ““F ratio versus’’ when there
is only one “‘period’’). The rsf/s requirement is our guess.
The sources for rs3 /(1 + 1/Nc)sg are: for one Control site,
Underwood (1991: Table lc [the tests using ‘“‘Residual’’]);
and for multiple Controls Underwood (1992: Table II: foot-
note b(i) and Table V, 1993: Tables 5 and 6, and 1994: Tables
2 and 3). The “T(Aft) X I"” of these tables is related to s3,
as the first term of the partition in Eq. A.l is related to s}g.
For the restrictions (1)-(4), the sources are: for (1) possibly
Underwood 1991: Table lc; for (2), Underwood 1992: Table
II: footnote b, and the opposite of (4) (presumably a slip:
footnote b(ii) contradicts footnote c(ii)); for (1), (2), and pos-
sibly (4), Underwood 1992: Table V; for (2), (3), and (4)
Underwood 1993: Tables 5 and (6); and for (1) and (2), pos-
sibly Underwood 1994: Tables 2 and 3. In these Tables,
“T(Bef) X I"” and “T(Bef) X C” partition “T(Bef) X L as
shown in Egs. A.1 and A.2, and the ““After” partitions are
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similar. Our *‘possibly’” means that the tests are indicated in
the Table but their connection with an Impact is not made
explicit.

¢) Variance tests like (a) and (b) above, but at two effect
levels, like the analyses in Group 3(b) and Group 4(b). “‘De-
tection’ is declared if one of several combinations of *‘sig-
nificance’ and ‘‘Ns” are found. For the example of 3(b), an
effect at the (within bay) Impact site is detected if s3,/spg
and rsp./(1 + 1/Ng)sy are significant but rsg /s, s¢./ség and
sga/sts are not; or if sj./spg and spA/(1 + 1/N¢)sE, are signif-
icant but s3,/s%s and s./sig are not. Here, si,/sy tests for a
Before—After change in Time X Site interactions in the ex-
ternal bays: sgp is defined like sZp in Group 6(a), above, but
with E (average over sites in an external bay) replacing C.
Similar combinations are tested at the second level if no first-
level changes in either mean (Group 3(b) and Group 4(b)) or
variance are detected.

For the first level, the sources are Underwood (1992: Table
VI and Table VII:Items la(l) and la(2). Underwood’s
“T(Bef) X S(C)” corresponds to our sgg; his ““/’’ is our Ng
+ 1 and his “*s” is our N¢ + 1; his degrees of freedom for
stz and sz, (“T(Bef) X S(C)” and “T(Aft) X S(C)”) seem
wrong: ‘I’ should be **(/ — 1).”

For the second level, using Ig;*, E.g, etc., as for Group
3(b) in this Appendix, let s3pg = 2 (Sa; — Ea)?/(Tp — 1),
S3ce = 2 3 (Eppi — Epp. = Eopy + Ep)/(Ng — 1)(T — 1),
and sjp. and s3c, be similar. An effect is detected if r(N; +
Ds3pa/(1 + 1/Ng)sg and s3pa/s3pg are significant but r(Ne +
1)s3ca/s% and s3ca/s3ce are not, or if s3p,/s3pg and s3p./(1 +
1/Ng)s3ca are significant but s3../sicp is not. The sources are
1992: Table VI and Table VII: Items 2a(1) and 2a(2). Table
VII says that “‘all”” tests used at the first level of Control
must be nonsignificant for the second to be studied, but it is
unclear why this should apply to tests involving s3. Under-
wood’s “B X I'" and “B X C” give our s3pg and sicg; “B X
L” is partitioned as in Eqs. A.1 and A.2. For example, s3p,
is the sample variance of Sg; — E.g;; Sg; is the average of N¢
+ 1 “‘site” values, each the average of r replicate samples;
E. g, is the average of Ng values like Sg;; thus the variance of
Sgi — E.g; is 0*(1 + 1/Ng)/r(Nc + 1) if all observations are
independent with variance o?.

d) N, sites, all potentially affected. An F test using s}, /s}
with s}, as in Group 3(c). The motivation for this is unclear,
since the numerator pools Before and After values, rather
than contrasting them. Perhaps s}, is to be separated into its
Before and After components, s3; and s3y, with a Before—
After variance change ‘“‘detected’’ if s3r;/sir is significant or
if si /s is significant but sjp/s} is not.

The source is Underwood 1994: Table 1b: the “T(B) X L’
line.

e) Multiple use of Group 6(a) and (b) when times within
a period (Before or After) are not evenly spaced but are sep-
arated into subperiods. An example might be: (1) for each
quarter (3-mo period), randomly choose four weeks; (2) for
each chosen week, randomly choose three days; (3) for each
chosen day, randomly choose four times of day. Then use
6(a) and 6(b) to test for changes in the within-day variance,
the within-week variance (using the day averages), and the
within-quarter variance (using the week averages). Some tests
compare average Before and After variances, but others com-
pare the ith Before day to the ith After day, or to the i;th and
i,th After days. “‘Detection’” may require nonsignificance of
tests on the Controls or, when sampling error is used, of tests
on the Before period. (We use ‘“‘day”’ here for illustration:
Underwood prescribes that samples be spaced sufficiently for
“independence.’’) Some tests appear to compare ‘‘between
subperiod” variance to ““within subperiod,” but no interpre-
tation is given.

For “‘Impact only,” the source is Underwood 1991: Table
3:“T(P Aft)/T(P Bef),” “T(P1 Aft)/T(P2 Aft)” (the first and
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second After subperiods), “P(Aft)/P(Bef),” and several “‘ver-
sus Residual’ tests. His “periods” are our days or weeks.
For a single Control, the source is 1991: Tables 4 and 5.
These are unclear, e.g., as to whether an “‘effect” is tested
by the Impact—Control differences, the Impact values alone,
or even by the averages of Impact and Control—*“T(P(B))""
seems to be the averages and “L X T(P(B))" the differences;
the footnote contradicts this in part, but its “‘repartitioned”
terms cannot be obtained from the ‘‘source’ terms above
them. We have guessed that differences are intended. partly
because Tables 7 and 8 of Underwood (1993) use them: their
“G/H” (for differences) and “E/F” (for Control sites) are
ratios of Before and After variance estimates based on period

102

TEMPORAL AND SPATIAL VARIATION

339

averages. It is also unclear whether the corresponding ““Con-
trol”’ tests are to be nonsignificant, or whether Table 5’s “L
X T(Bef)” is the same as Table 4’s “L X T(P(Bef)).”” The
last two lines of Table 5 compare the first and second Before
days to the corresponding After days. The denominator de-
grees of freedom for the first six tests of Table 4 seem wrong.
For multiple Controls, the sources are Underwood (1993):
Tables 7 and 8; these use the Impact-Control differences, Dy,
and are taken to show an effect only if related tests on the
Controls are nonsignificant.

Tables 3-5 of Underwood (1991) also compare ‘‘Between
vs. Within periods” (e.g., variance within days to that within
weeks), but no interpretation is given.
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Impact assessment

A common monitoring problem is: Describe the effect
of an environmental alteration on the abundance of
a given species at the ‘Impact’ site. Harbors, break-
waters, developments, sewage outfalls, oil platforms,
coastal power plants and recreational access ~ and
removals or redesigns of these -~ are examples in
the marine environment, and plants, invertebrates and
fish are typical populations of concern. The lmpact
site is defined naturally in some cases, as a bay or
estuary, but arbitrarily in others, as a region surround-
ing the alteration.

Before permitting such alterations, decision-
makers review predicted effects. These are often
subjective, widely varying, and wrong. Monitoring
and assessment can aid later decisions: to close
the alteration down, modify its design or operation,
require mitigation or compensation, allow expansion,
or collect further data. By exposing error, it helps
keep predictors honest; by adding information, it
improves future decisions.

Most alterations will have biological, environ-
mental, economic, aesthetic and other effects. To
compare these, decision-makers need quantitative
descriptions, with measures of uncertainty. This usu-
ally means confidence intervals or regions at present,
though Bayesian credibility regions may sometimes
be preferable. The existence of specific effects can
often be taken for granted, so hypothesis tests are
inadequate — or worse, if P values are mistaken for
measures of effect size. The main exceptions are
experimemts using short-lived treatments with gen-
uinely uncertain effects on “unimponant’ sites, and
cases where stadistical testing is legally required,
However, the former are usually improved by esti-
mates and the latter often due to poorly written laws.

Abundances fluctuate widely over time, so the
problem can be restated; Describe how the time series
of abundances following the alteration is different
from what it would have been without the alteration.

I assume data are available Before and After the
alteration, and discuss applying Intervention Analysis
(IA) to estimates of abundance over time. Although
assessment data sets are large, the main problem is
usually limited data: many species and samples are
counted but studies are short compared to the periods
of natural cycles and variations. ‘Control’ sites can
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help separate alteration effects from long-term fluctu-
ations. I discuss and illustrate this, and explain why
problems such as site and model selection cannot be
avoided by ‘random’ site selection.

Intervention analysis (IA)

The data typically consist of estimated abundances
(e.g. from core samples, diver counts, net hauls) taken
from the Impact site at a set of times Before the
alteration and at another set After it:

Ip; = estimated Impact site abundance at time 1p;

(1

where
tp; = ith sampling time (i =1,2,..., Tp) in period
P = B or A (Before or After) 2)

Usually, Ip; summarizes observations taken at
subsites within the Impact site. How alteration effects
vary within the site is not considered explicitly here;
a crude model with the effect at distance d given by
(say) A(1 = #) for 0 < y < 1, could be fitted to a
sequence of Impact subsites by the methods given
below. Sampling error is only part of the variation in
effect estimates (the rest is natural temporal variation
of the abundance itself), so its variance estimation is
also ignored. In practice, it is not ignored because
subsites should be chosen to minimize eror, and it
is not usually simple becavse a spatially stratified
subsite choice is almost always more efficient than
random selection [1, 40].

Defining an ‘Effect’

A natural definition of the alteration’s ‘effect’ com-
pares the Impact site abundance after it with the
abundance that would have arisen if it had not
occurred. With

Ap (1) = abundance at time ¢,
under ‘alteration’ (After) conditions  (3)

and Ag(7) the ‘no alteration’ (Before) function, the
effect could be Ap(t) ~ Ap(r), Ao(t)/Ag(t), or some
other measure.

Thus, we want to compare two time series; the
future one following the alteration and the hypotheti-
cal one that would have arisen without the alteration.
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Only a limited future period is of interest, such as
the expected lifetime of the alteration, Decisions will
be based on summaries of these functions, such as
the mean (calculated overall, or for particular sea-
sons or conditions), not the full sets of continuous
values, (*Chance of extinction’ is also appealing but
is hard to estimate or even define, because it reflects
our tgnorance as well as the population’s fate.)

Models, Parameters and Estimates

The role of the data is to help predict Ap{(r) and Ap(?)
or the summaries over a future peried. I assume this
begins after the study ends: if it is within the study
period, then we might use interpolation rather than
prediction to guess Aa (7).

Neither {Ip;} nor {J4;} is from this period. Even if
we knew the exact abundance continuously through-
out the study, prediction of future values would be
uncertain. To connect the observations to future val-
ues and previde a basis for calculating the uncertainty
of predictions, we need to model abundance as the
outcome of a process involving deterministic and
stochastic parts. An example is

Ap{t) = fa()+ X{1) 4)

The deterministic part, fp(f), might be a seasonal
sine wave

FB(t) = up + on sin(2w¢) + fp cos(2me) (5)

if ¢ is measured in years. The model for A4 (#) could
be similar with (4 = pp + A or other parameter
changes, or could allow for a gradual change to a
new equilibrium, e.g. using a transition function such
asus=pp+ Al —a)for0<cw < 1.

Events causing ‘chance’ deviation from fp(7) can
be brief (upwellings, predator visits), but still affect
several sampling times: e.g. if Ap(¢) = fp (), then
the additional population members will contribute to
later abundances by survival and reproduction. Thus,
the deviation at time t; depends on past deviations
and on chanc¢e events opccurring, €.8.

P
X6y =) $;Xi~j) + Ui
=l

(6

where the ¢s are constants to be estimated from
the data. If the {/;s are “white noise’ (uncorrelated
with mean =0 and equal variances), then this is
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an ‘AR(p)’ (pth order antoregressive (AR)) pro-
cess [4). However, part of U; will be new effects of
long-lasting events (storm runoff, epidemics, migra-
tions, El Nifio events) that have already affected
previous sampling times. We might assume

g
Ui=Vi+ ) 6;Vi_; M

i=l1

where the V;s are white noise. The U;s then form a
‘MA(g)" {(gth order moving average (MA}) process,
and the X;s are then an autoregressive moving
average (ARMA) “ARMA(p, g)" process.

We do not observe Ap = fpg + X; we observe

Ip; = Ag(tBi)} + W(sBi) 3
where W is sampling error. If W is white noise,
independent of X, then Z(#) = X{#;) + W) forms
an ARMA(p, Q) process, where Q= max{p,q)
[4, p. 122]). A similar extension arises if the Ws are
themselves an ARMA process.

If (4)—(8) are correct, then the assessment consists
of estimating the parameters of fg (5) and f A, and
comparing these estimates, or functions of them. The
standard errors (SEs) of these comparisons depend on
the parameters of X: g2 = V{V;}, and the ¢s and 8s.
(Future values of X{t)} would be estimated for short-
term forecasts of Ag(¢) and A4 (¢), but here the ‘future
period” of interest is much longer than the study.)

Maximum likelihood (ML) methods give consis-
tent and approximately unbiased and normal esti-
mates, and also estimate the covariance matrix of
these estimates. Confidence intervals and tests can use
the approximation (estimate — true value)/(SE of esti-
mate) ~ N(O, 1) (or a t-distribution). For (5)—(7), ML
estimates can be obtained iteratively: (i) esgmate W, o
and 8 by ordinary least squares to obtain fq; {ii) use
the residuals Ig; — j'o (tpi) to estimate the ARMA ¢s
and #s; (iii) use the correlations implied by these esti-
mates to re-esl:ima}e. M, @ and B by generalized least
squares to obtain fy; and (iv) repeat steps (ii} (using
F1) and (jii) until estimates do not change.

See [5, 6], and [43] for 1A, and [4, 7, 8, 13, 19,
501, and [70] for ARMA models.

Complications

These procedures were developed for long series with
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Gaussian errors. The main results apply approxi-
mately to non-Gaussian distributions, and the algo-
rithms are commonly applied in these cases. But
virtually all theoretical results are asymptotic: Box
and Jenkins [4, p. 33] recommend at least 50 obser-
vations. Impact assessment datasets are more likely
to have 10-20 observations in a period, which is usu-
ally short relative to the persistence of the ‘chance’
effects listed below (6).

For short series, bias usually remains small,
and may partly cancel out differences between
Before and After estinates, Variance formulae
and Normality are less reliable. Ome approach
is computer-intensive Monte Carlo or bootstrap
methods (e.g. [17, 22] and [39]. [See Computer
intensive methods] Roughly, we fit a fully specified
model, obtaining estimates j, etc., ¢s and 8s. For
Monte Carlo, we use the fitted model to generate
many random time series, apply our estimation
methods to each, and use the error distribution of
the resulting estimates as the basis for confidence
intervals. For bootstrap, we use the fitted values of f
(5) to estimate the Z;s following (8) by Z;s. We use
these and the &s and s to estimate the iid innovations
by {V;] (the first few V;s cannot be estimated). We
choose an initial set of V‘}s randomly from {V;}, and
simulate a subsequent ARMA process by plugging
these, the @s and Os, and further random choices
from {V;} into the defining (7} and (8). Davison and
Hinkley [17, Chapter 8] suggest making this process
longer than the actual series; the bootstrap sample
uses only the last Tp terms, the others being used for
“burn-in" to approximate an equilibrium distribution
for the first bootstrap value.

Further problems arise when (4)~(8) are implau-
sible for observed abundances. ARMA models are
flexible, but not all correlation structures are well
approximated by (6) and (7) with low p and 4.
Sampling times may be unequally spaced. The Vs
may vary more at some times of year than others.
There may be a separate component of annual varia-
tion, e.g. for species with a short recruitment season.
Ermrors may not be simply additive: e.g. (8) may be
plausible while (4) is more plausible for log[Ap (1)].
State space models {7, 18, 28, 33] are a promising
approach in these cases, but may need still longer
series.
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Feasibility

Unreliable asymptotic distributions are not the only
problem arising from the usually short series of
observed 1 p;s.

‘Chance’ temporal fluctuations in abundance are
high for many species, therefore predictions or esti-
mates of model parameters may be too uncertain for
decision-making. Increasing the sampling frequency
can reduce uncertainty only to a limited degree
because of temporal comelation,

Worse, this correlation, and thus the uncertainty
itself, may be grossly underestimated. An El Nifio
event or disease could affect the whole of a short
Before period, with litde effect on the correlations
among the fg;s. If the disease led to the sequence
{D + i} instead of {Ip}, the sample correlations
would be unchanged. The chance of such a mislead-
ing event is greater if the Before and After periods
are separated by a long ‘Intenm’ period, ¢.g. for
construction.

Before—After/Control Impact (BACI) -
Using ‘Control’ Sites as Covariates

Box and Tiao's [6] IA model includes exogenous
variables other than the intervention itself. Such
variables can reduce unexplained variation and may
also reduce the role of long-term temporal comrelation
to negligible levels. Equation (5) makes time-of-year
such a variable, and environmental variables such as
temperature, salinity, nutrients, etc. might also play
this rele for abundance.

Abundances at other sites could be useful covari-
ates if these sites are far emough away to be lit-
tle affected by the alteradon but near enough to
experience the same major environmental fluctua-
tions and similar enough to respond in the same
way. Their relationship to Impact abundances may
be simpler than those of other variables (e.g. no
time delays), an important advantage for short series.
Such sites can reflect only widespread variation, but
this may be what we most want to remove: large,
long-lasting fluctuations which threaten validity. Ref-
erences include [21, 57, 62], and [11] — a superb
general account, presented in a social science context.

VABDO1-
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Models

Ohbservations Cyp; are taken at Control site % at the
‘same’ times (near enough for useful matching) as
the #p;s are taken at Impact (1}). The easiest model
uses the differences, /5; — C.pi, where °’ indicates
an average or other summary over the control sites.

Suppose that the abundance at site S satisfies

Spi = pups + f{B:) + Ripi} + eslips)

+&glirg;} fori=1,2,...,Tp (%)
under Before (no alteration) conditions: ups is the
long-term mean at site S, f and R are fixed and
random functions describing temporal variation in
the region covering Impact and Control sites, &g
is an ARMA process describing site 8’s deviation
from the region, and & is sampling error. Then the
Impact—Control difference satisfies

Ini = Copi = pBD + 6D (B} + Ip0R)  (10)
where the ‘D’ subscripts indicate differences, e.g.
£p = &] — .. The hope is that the additional vari-
ation due to the c.s and {e.s is less variable, less
strongly correlated over time, and easier to model
than the removed f and R. The variability added
by the ¢c.s is often important but may be control-
lable by increasing sampling effort on each visit. The
main asswmption in (9) is that the regional vanation,
f + R, is additive. Transformation can allow other
possibilities: for multiplicative variation, we can use
log(fa;} — log(C.p;) with an adjustment for zeros. A
plot of the Before differences, /g; — C.p:, against the
sums helps examine this — a formal test for a nonzero
slope corresponds to Tukey's [65] ‘one degree of
freedom’ test [38, pp. 282-284].

Equation (10} allows estimation of the Before—
After change in pp, 88 a constant or a function
of time-of-year or other environmental variables.
However, while it implies that the unconditicnal
expectation, E{fp; — C.p;}, equals upp, it dees not
jmply that the conditional expectation, E{fpi|C,pil,
equals C.p; + ipp. It does not allow us to compare
estimates of what the Impact value would have been
for a given Control value, under Before and After
conditions.

To obtain such estimates, we need a model for
Elfp;|C.pi} or for E{fp;}C.p; and other predictors}.
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This suggests the regression model

Ipi = ap + BrC.pi + e(tBi) (11)

where ¢ is an ARMA process uncerrelated with C.
and accounting for both sampling error and fluctua-
ttons in the ‘true’ Impact and Control abundances.
Fquation (11} can be used to: (a) estimate effects
under conditions of regional abundance or scarcity,
as measured by C,; (b) estimate an average change,
by ("a — "B)C + &5 — an, where C is the average
C. value over both periods; (c) improve rough esti-
mation of change on different scales (change in A,
log(A), etc.) by using the average of g("{fa/lCH —
g("{78iIC}) over all observed values of C.p; to esti-
mate the average change in g(A).

Unmeasured Uncertainty

The uncertzinty expressed in SEs, confidence inter-
vals, ete. does not include uncertainty about the
model.

Equations (4)—(11) could apply to the abun-
dances, [p; etc. or to their logs or other transfor-
mations. Rather than the sine wave of (5), seasonal
variation could be treated by letting Z, = y; + Ry,
where 3, is the mean of months corresponding to
t and the differenced residuals, R; — R,—17 (for ¢ in
months), follow an ARMA model. This is more flexi-
ble, but requires more data and makes inference about
changes in phase or amplitude harder. Other mod-
gls might use a weighted average of the Controls
(e.g. based on spatial position) or separate 8s for dif-
ferent Controls. Some form of (9)'s ‘value = F(site
mean, regional variation, local variation, sampling
errory’ might yield a model for E{J|Cs), but no sve-
¢inct one seems available. More mechanistic models,
using information from the literature or supplemen-
tary experiments, may be more precise and better for
management, corrective action, or distinguishing the
effects of multiple alterations. Speed [59] and Raftery
et al. [51] give excellent frequentist and Bayesian
accounts, but the species’ population dynamics are
rarely known well enough. The possibilities are many
but the practical ones often few because of sparse
knowledge and short series.

One approach is to repeat the analysis with sev-
eral models. When parameters of different models
have different meanings, comversion is needed to
compare effects of interest, e.g. absolute change, per-
cent change, etc. These conversions seem easier from
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(11} than from (10). A more formal approach uses
weighted averages of results from different models
{after conversion to common effect measures): meth-
ods are described by [10} and [29] from classical and
Bayesian viewpoints, respectively.

Another source of uncertainty is changed con-
ditions in the future. Defining the ‘effect’ as the
difference between future values with and without
the alteration over {say) 50 years lets us avoid tak-
ing geotogical and (perhaps} evolutionary change into
accou, but global warming and ozone depletion
mighe affect both sets of future values by different
amounts.

Examples
Numerical Example

Figure 1 shows data from the National Park Ser-
vice's [45] annual samples (since 1982) of the Santa
Barbara Channel Islands. There was no human alter-
ation in this period, but I pretend that there was one at
the North (*Impact’) site between the 1990 and 1991

samples. The Empact data alene suggest a decrease,
but the ‘unaffected’ site suggests there is comrelation
over a wider area, too long term to show up within a
seven-year period.

With ;=0 or 1 for ‘Before’ (timesi=
1-8: 1983~ 1990) or “After’ {times 5-15), and I; and
C; = Impact and Control averages at time ¥, I fitted
five models:

f= g+ Ax + 5 (12)

log({j}) = p + Ax; + & (13)

—Ci=p+ Axi+45 (14)

log(fi} — Jog(Ci) = e + Ax; + 5 (15)
Ii = a+oax; + C;

+ BaxiCi + & (16)

Each model was fitted under six different assump-
tions about the comrelation structure of the errors,
g;: uncorrelated, AR(1), MA(1), AR(2), MA(2), and
ARMA(1,1). The last ‘Betore’ and first *After’ obser-
vations are correlated here. In many impact studies,
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Figure 1 Average counts (x 10) of the giant keyhole limpet, Magathura crennlata, on 60 m? bands at Johnson's Lee North
(site ‘N’) and South (*§™), on Santa Rosa Island, California, from 1983 to 1997. The vertical lines show the estimated se
due 1o that date’s sampling error. (This is probably an overestimate: the samples were regular, not random)
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the time gap between these two is much bigger than
the aother gaps, so this correlation is ignored. The
Before and After values of o2 and the ¢s and s
might also be estimated separately.

S5-PLUS's ‘gls’ function performs the ML iter-
ations, but may approximate the full ARMA(p, 4)
likelihood by conditioning on the first p observa-
tions [70, p. 415]. Both likelihoods are approximate
since normality is unlikely, and the difference would
be negligible in a longer series, but [ used gls, then
used the ITSM program [8] on the residuals to re-
estimate the ARMA parameters, used these estimates
in gls {without iteration) for new estimates of u, A,
Ba. etc. used iterative time series modeling on the
new residuals, and 8o on, stopping when the effect
estimate, A or {&a. Ba), was stable — about 5—8 (but
up to 18) extra iterations. The regression parameters
did not change much, though the ARMA parameters
sometimes did.

The six estimates for each model are summarized
in Table 1. The ‘best’” ARMA model was the one
with the smallest value of the Akaike Information
Criterion (AIC). The autocorrelation and partial auto-
correlation functions of the residuals from all final
ARMA models were within (usually well within) the
standard 0.05-level test limits (£1.96/./n; n = 15}
for all tags. The uncorrelated model had s¢ven bor-
derline values and one excess value each for (12) and
(E3); all its (16) values were well within the limits.
For n = 15, the power of the test and the reliability
of the asymptotic distributions may be doubted.

The percent change is 100 x }’:U(Impact Before
average) for (12) and (14)ﬂ. 100 x exp(f\) for (13} and
(15), and 100 x (&a + BaC.) /(@ + ~C.) for (16),
where Ca is the average of the Contrel values over all
times. Approximate P values compare Estimate/SE
with the #-table on 13 (12}~(15) or 11 (16) degrees
of freedom (df).

Omne lesson is that long-term correlation can cause
misleading patterns, which can be modified by using
Controls. This benefit will not always be apparent
from the data. Compared with Impact site values,
BACI differences have more sampling error and
local variability, which can be estimated, bt’l_lh less
long-term variation, which cannot. Here, the SEs of
the Before—After estimates (12) and (13) are about
the same as those of the BACI estimates {14} and
(15), but they could have been smaller. Another
lesson may be that model form matters more than
correlation structure. For a given form, the different
ARMA error structures usually gave answers within
1 &E of each other. Differences between forms were
greater. Higher order ARMA models might have
given different results, but the series is too short
for credible use of these, Only (15) gave the ‘right’
answer, no evidence for a change, but I chose the
example for illustration and convenience (e.g no
ZEr0§8 Or $¢asong), so it may not be typical. More
disturbing is the difference between (13) and (16):
if In(f;) —~m(C;)=p, then I; =& ;, so added
random fluctuations and sampling error make (16)
plavsible. It may be that the flattening of slope
estimates due to sampling error at Control {the ‘errors
in variables’ problem) is greater in the After period
because of reduced regional variation,

Published Examples

The following list is a selection only and therefore
incomplete. Most add purposes, impacts or variables
to the range of applications, and wse statistical infer-
ences not as decisions or revealed truth but as guides
to biological conclusions in concert with other infor-
mation. Many add details of data transformation and
selection that real studies rarely escape, and none
seem misled by implawsible models. Some inferences

Table 1
Model equation Range of estumates Range of SEs Best Estimate: (§:€) % change
(12) A:—126 10 —102 38 to 53 MA(2) —122(38} —6&0
(13) A —08te —1.05 0.27 to 035 AR() =0.35(0.33) =57
(1) a: —65 10 -1 24 to 29 MA(D —-68(28). =23
(15) A:=0.53 to 40.22 0.26 to 0.57 AR(2} +0.22(0.26) +24
(16) ot:,\: ~3.6 w0 428 38 to 40 MA(1) —5.64(39.5)
Ba: --1;39 to —-1.11 0.58 to 0.64 —1.12{0.58)
oy + faC.: —83 to —67 24 ro 30 —82(30) —d46
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take insufficient account of model uncertainty and
autocorrelation. Estimates based on short study peri-
ods can be misleading, and natural variation such as
El Niiio may cause alteration effects to vary [36].
Warnken and Buckley [73] note that developers are
reluctant to pay for menitoring before approval er to
delay construction after it: of 44 parameters moni-
tored at 13 Australian tourist developments, onky one
had more than one year of ‘Before’ data, and none
had 10 Before times.

Accounts of BACI analyses include [41], using
{16} above, [2, 55, 63], and a Bayesian approach [15].
The most complete accounts may be in reports of
particular impact studies, where the design prob-
lems, ranges of species and impact mechanisms, and
need for a coherent, quantitative biological *story’
to compare with economic and other concemns, can
be best appreciated. Two good examples deal with
Southern California power plants: [44] and [64]. Bio-
logical examples of IA, where no Control existed, are
given in {46). Simulation studies of power and valid-
ity are given in {38], using 15, and [35], using the
Ricker stock-recruitment tnodel {their equation (1}
has a typo).

Bialogical intuition can be guided by assessment
experiments. Areas may be deliberately altered [12,
16, 30, 32, 48, 53], previously altered sites selec-
tively restored [72], an ongoing disturbance source
manipulated [25], or captive organisms introduced
into Impact and Contrel areas. These studies can
clarify mechanisms and test statistical models, but
raise new questions. Unavaidably, most use few sites,
some only one per treatment. Potential interactions
between sites and treatment mechanisms can make
the definition and comparison of Impact and Con-
ol ‘populatiens’ tricky. In some source manipula-
tions, ‘treattment’ periods or sites may have crossover
effects on ‘controls’.

Most assessments involve many species, and thus
a multiple testing problem: the chance that all 95%
confidence intervals are correct is far less than 95%.
Methods that control “studywise’ error rates are con-
troversial in general [60] and rarely useful in assess-
ment: with dozens of species, they use highly unre-
liable extreme quantiles (e.g. 99.9%) and increase
interval widths which are already large. In provid-
ing an overall description of effects, and an account
of its uncertainty, the individual confidence inter-
vals, with their limitations clearly explained, can be
interpreted and weighted by their coherence with
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each other and other information — measurements
and models of the alteration’s physical and chemical
effects, the physiology and interactions of the species
involved, and so on. A drawback of this informality
is its reliance on biological intwition. A more for-
mal approach is to seek multivariate measures that
can yield fewer, more coherent results and greater
power (g.g. [26] and [27]). This has difficulties too:
interpretation of principal components and ordina-
tions, dubious linearity assumptions and wncertainty
measures that ignore the data-based selection of anal-
ysis procedures. Verdonschot and Ter Braak (71] and
Kedwards et al. [34] used permutation tests and ordi-
nation (o assess experiments with several treatment
levels: even with 12 ‘sites’, power was low unless
samples (rather than sites) could be permuted.

Experiments, multivariate methods, overall design
and problems of early detection, are discussed and
illustrated in a series of papers [23, 24, 31] on effects
of mining runcif on streams (whers Before—After,
Impact—Conteol and upstream—downstreaim compar-
isons may all be relevant).

Assessments as Experiments?

Underwood [66-69], and others have argued that
BACI and IA give insufficient evidence that the
alteration caused a change, that different sites will
always have different ‘asbundance trajectories’ and
that assessment should be teated as an experiment,
with multiple randomly chosen controls used for error
estimation. Stewart-Caten and Bence [61] compare
BACT with this radically different approach in detail.

1A and BACI do not use experimental controls.
IA does not need controls. BACI uses carefully
{not randomly) chosen controls as covariates, not to
estimate error but to cope with long-term temporal
variation. This does not require identical trajectories
but enough “synchrony’ [3, 9] for the errors in models
such as {13) or (16} to be of manageable size and
adequately described by ARMA models of low order
compared 1o Ty and T, {2).

Choosing controls and models requires judgment
and introduces uncertainty that is hard to measure.
BACI controls may be unnecessary if long-term
temporal variation at Impact is low, or even harmful
if they track it poorly. Negligible long-term variation
is rarely credible, but good Control sites may not
exist or be hard to choose (espectally for multiple
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species). The acronym ‘BACT first arose in an
argument that it was not suitable for assessing
Southern California kelp beds because historical
records of disappearances and recoveries showed no
spatial correlation.

These problems are reduced in experiments, but
real assessments lack the essential ingredient: sites
are not randomly assigned to treatments. Assaming
the sites are ‘as if random’ choices from Impact
and Control ‘populations’ is also untenable, mainly
{(though not only) because there is no Impact popu-
lation: the goal is to describe effects at the site that
was altered. The variation among multiple controls
depends on how ‘similac’ they are — a subjective,
arbitrary, usually implicit investigator judgment ~ so
it cannot ohjectively measure the error in estimates of
Impact site changes. Longimdinal analysis [20] of an
assessment experiment with many randomly assigned
sites would allow inferences to a population, but few
smdies can use enough sites.

Thus real assessments are unavoidably closer to
observational studies than to experiments. Causal
inference from observational studies has had statis-
tical attention (e.g. [14, 52], and [54], but in the
population form ‘does smoking cause cancer?’ not the
assessment form “did smoking cause Smith's cancer?
Study of mechanisms, from the Lterature and sup-
plementary experiments, and wse of sites at varying
distances from the alteration, can help [33].

Extensions

This account assumes a planned alteration: long-term
effects and Before data. Some planned changes, such
as controlted buming, yield ‘pulse’ responses [6]
which decline with time. In principle, these can be
assessed in a similar way, using a transition function
such as pa = up + A’ rather than the functions
following (5). In practice, estimation will be difficult
unless A is larger than the typical randem shock {V;
in (7)) or the decline is slow, and problems with short
series will be exacerbated. Parkinson et al. [47] and
Segura et al. [36] provide examples.

Many alterations have no Before data. Impact
areas and subareas can be compared to Controls, but
these are unlikely to be equal anyway, and treating
them as independent ignores spatial correlation. It
seems better to use the Controls as a spatial *series’
to predict what the lmpact site would have been like
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without the alteration, but typical assumptions such
as stationarity and isotropy are likely to be more
important and fess plausible than for ime series.

For accidents such as oil spills, effects are usually
short term and Before data absent, sparse, or weakly
related to the target (different places, observers,
variables, etc.). The Impact area may be *selected’ by
confounding natural precesses, €.g. currents carrying
spilled oil and nutrients to the same sites. Useful
discussions and examples are given in {37, 42, 49),
and [74].
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Pseudo-replication

Hurlbert [5] defines pseudo-replication as ‘testing for
treatment effects with an error term inappropriate
to the hypothesis being considered’. An alternative
definition is ‘estimating the size of chance variation
without accounting for all its likely sources’. Exam-
ples include:

1. estimating the decomposition rate of leaves in a
lake using values obtained from N bags of leaves,
all placed in the same plot;

2. comparing the rates of oak and maple leaves, using
samples of N from two plots, one oak and one
maple;

3. equivalent to case 2 with each sample coming
from k plots, each with N/k > 1 bags;

4. testing effects of fox predation on rodent sex ratio,
using counts of male and female rodents from one
field with foxes and one without, in a x2 test. This
is similar to case 2, but the x> from may make it
harder to recognize;

5. other ecological field and laboratory studies where
values of units (e.g. organisms) treated in batches
(in aquaria, microcosms or fields) are analyzed as
if independent.

In each case, treating the observations as indepen-
dent ignores sources of variation. If there is variation
among plots or fields, then the true sample size is
not N but k in case 3 and one in the other cases.
The true level of variation is underestimated, so the
uncertainty of conclusions is greater than the nominal
level.

True variation cannot be estimated in cases 1, 2
and 4 without an assumption about variation among
plots. It can be estimated from the two sets of & plot
averages in case 3, if plot positions were randomly
chosen (see Randomization). Some investigators test
that there is no ‘plot’ component of variation before
pooling bags into a common sample. This protection
can be unreliable: if the difference between the pooled
and unpooled inferences is critical, then the test
probably has low power against levels of variation
that are low but non-negligible. Other justification is
needed, especially strong evidence based on previous
experience. This is rare in ecology.

One response, the claim that variation among
‘replicable’ units can be ignored, muddles the under-
lying concepts. Replication is needed for validity: to
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assess variation among units and thus the size of error
and uncertainty. It does not require or imply homo-
geneity (which is useful for efficiency: to reduce vari-
ation, error and uncertainty). ‘Replicability’ among
units has no meaning. Zero variation among units
requires not only that they be identical (not just sim-
ilar) in all relevant respects at the start of the exper-
iment, but that they experience identical conditions
during the experiment, and usually that treatments can
be applied to different units in an identical manner.
Most claims of ‘replicability’ establish only rough
initial similarity in a few respects.

Recognizing Pseudo-replication
Several questions seem helpful.

1. Are units assigned to treatments independently?

2. Are treatments applied to units in batches (espe-
cially in a single batch per treatment)?

3. Does the experiment design make units given
the same treatment likely to experience greater
similarity under other conditions than units given
different treatments?

4. Are there likely sources of variation whose effects
will be more similar, on average, for units getting
the same rather than different treatments?

To avoid pseudo-replication, an analysis that treats
the unit values as independent should answer ‘Yes’
to question and 1 ‘No’ to the rest. No single question
seems to cover all possibilities. It is easy to violate
question 1 while satisfying the rest. We satisfy ques-
tions 1 and 2 but not 3 and 4 if we randomly assign
rats to injections of different drugs, applied indepen-
dently, but then cage them so that each cage contains
several rats, all with the same drug. It is not neces-
sary that there be only one cage per drug, nor that
the set of cages for one drug differs in a predictable
direction from other sets. Questions 3 and 4 both ask
‘are there sources of variation that cause correlation
to be greater for units given the same treatments?’.

A design in which units arise in blocks need not
imply pseudo-replication. Even if random treatment
assignment ignores the blocks and leads to some
treatments being concentrated in some blocks, p
values and other inferences based on randomization
remain valid. Pseudo-replication arises if the design —
i.e. the assignment method — makes some lop-sided
arrangements especially likely.
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2 Pseudo-replication

It is not always obvious what a ‘unit’ is. In this
section, it is the entity contributing a single value
(which may be a vector) to the analysis. It could be
a single rat, but if rats are weighed several times
then it could be a single rat if the repeated weighings
are treated as a single multivariate observation, or a
combination of a rat and a weighing if all weigh-
ings from all rats are treated as independent (see
Repeated measures). Pseudo-replication occurs in
the latter case. One can think of pseudo-replication
as the misidentification of units, but this suggests that
the analyst should first identify the units and then
carry out an analysis that treats them as independent.
If the rat weighings are taken over a period of time,
then one may want to use them separately (rather than
just averaging them) to trace the progress of drug
effects or fit parameters of a theoretical model. Also,
‘units’ may be hard to define. Hurlbert [5, p. 190]
argues that if the bags of example 2 are all randomly
placed in the same plot (e.g. at random points on the
same isobath), then the ‘units’ are the physical loca-
tions. Others might feel that the bags are the units
and the random plot effects constitute measurement
error (cf. [9, Chapter 9]). In such cases it can be
easier and more reliable to determine the analysis
by specifying and justifying a formal mathematical
model (e.g. outcome = species mean + bag effect +
position effect, the last two being independent), a pro-
cess too often discouraged in ecological data analysis.

A General Criticism and Some
Consequences

Hurlbert treats probability as if it has a standard def-
inition and method of measurement, like a physical
property. Instead, at least three sources of chance are
common in environmental work: (i) random assign-
ment of units to treatments, (ii) random sampling
from the population of interest, and (iii) random
choices by ‘Nature’.

Source (i) is the most credible since randomizing
mechanisms like coin tosses or random number gen-
erators can in principle be checked for any patterns
to any degree of precision. It is available only for
experiments where the investigator controls assign-
ment. Each unit is assumed to have a set of pre-
destined values, one for each treatment. Only one of
these is observed. Under the ‘unit-treatment additiv-
ity’ assumption, each treatment’s effect is the same
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on each unit: there is a set of unit values, U;, and a
set of treatment values, T, such that the value of unit
i under treatment j equals U; + T;. Under any null
hypothesis specifying the Tjs (e.g. Hop:all T =0),
the U;s can be calculated from the observations. We
can then calculate the test statistic that would have
been obtained for any assignment of the Ts to the
Uis. Listing these values for all possible assignments
gives the null distribution, and hence tests and con-
fidence intervals. Inferences about units not used in
the experiment are based on the additivity assump-
tion. From this viewpoint, failure to randomize does
not lead to approximate error probabilities [5, p. 197]
but to none at all: Hurlbert’s ‘layout-specific o’ is
meaningless until the observations are made, and then
it is one if the null was rejected and zero if it was
not [4, Chapter 2], [6] and [9] are good guides to this
approach.

Source (ii) makes derivations easier and is needed
in observational studies. In experiments, it is equiva-
lent to random selection from the population followed
by random assignment to treatments. It avoids source
(i)’s additivity assumption by adding the random
selection assumption. This is usually a bad trade.
Additivity may be approximately true (possibly after
transformation), can be checked, and may be needed
for intelligible results (e.g. to decide on commercial
application or to speculate sensibly about mecha-
nisms). Random selection is rarely true, and can
lead to worthless data if it has tempted the inves-
tigator to dispense with literal random assignment.
Kempthorne [7, p. 322] calls it ‘usually completely
ludicrous’ for experiments, and it seems dubious for
most observational studies of nonhuman populations.
Few laboratory organisms, aquaria, or research station
plots are randomly chosen from a relevant population.
In medical experiments, the population of concern is
usually future patients, who cannot be randomly sam-
pled. It is also dubious for most observational studies
of nonhuman populations. Hurlbert’s example 5 [5,
p. 193] is like example 2 above, except that all 2N
bags are randomly assigned within the same plot. He
accepts that the single plot would be sufficient for
‘comparison of the two species’, but contradicts this
by arguing that a comparison of oak and maple for the
1 m isobath of a class of lakes requires random selec-
tion of lakes and positions. But this argument also
requires random selection of the leaves that, taken
literally, seems impossible for a single tree, let alone
a species. Even then, results would apply only to the
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time of the experiment, unless random times could
somehow be selected as well. Of course, using sev-
eral lakes and plots is preferable to using a single
plot: it makes additivity easier to check (especially
with blocking) and the results more robust against
moderate deviations from it. Using randomness in
selection, along with other considerations, can also
be useful, if only to reduce bias. But the belief that
inferences must be justified by random selection from
the population of interest is an illusion that can lead
to substandard inferences and damaged experiments
(e.g. when random selection leads to poor coverage or
inaccessible plots). At some point, we must assume
our results apply to populations we have not ran-
domly sampled; evidence from inside the experiment
(e.g. of additivity) can help with this, but external
evidence is usually required.

Source (iii) uses models in which deterministic
but unpredictable natural events are represented by
chance variables. It can be combined with source
(i) or (ii), e.g. to allow for measurement error or
covariates, but is also the only choice in a wide array
of observational studies, especially of complex pro-
cesses that either cannot be repeated under ‘identical’
conditions (such as time series or spatial analysis in
ecology) or whose mechanisms or stages are of inter-
est (e.g. studies of learning, evolution, invasion or
disease). Hurlbert’s ‘layout-specific &’ and his argu-
ment for interspersion of treatments are based on an
implicit chance model, roughly of random variation
about a monotone trend in times or sites. Probability
calculation, selection of designs and assessment of
the gains and losses of interspersion require explicit
models. Polynomial trends of low degree may best
combine plausibility and tractability. Cox [2] gives a
succinct but thorough account with explicit recom-
mendations. Cox [3] compares interspersion, block-
ing, use of position as a covariate, and other methods
in the case of linear trend.

‘Validity’ must be assessed for all three sources
by identifying assumptions and examining their plau-
sibility. Hurlbert’s criticism [5, p. 204] of impact
studies and ‘temporal pseudo-replication’ mixes sev-
eral issues. To dismiss inferences from analyses of
time series or spatial data on the grounds of ‘pseudo-
replication’ is clearly mistaken. Analyses based on
independence are more vulnerable, but correlations
can be positive, negative or also sometimes zero (or

VAI002- at least negligible). Impact assessment is not an
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experiment. The task is to assess impact at a partic-
ular site, not a population of sites, so assignment of
treatments to sites is irrelevant: ‘pseudo-replication’
does not arise from one impact and one control sta-
tion [5, p. 204], or even from no control at all. (For
example, Box and Tiao [1] had no ‘control’ for Los
Angeles in their intervention analysis of its air pol-
lution.) An impact will cause the ‘before’ and ‘after’
time series to differ. Inference about this requires a
model, to be assessed by its plausibility and its fit to
the data. For instance, treating multiple values from
the same time and site as independent assumes pop-
ulations do not vary naturally over time (or that sites
vary in perfect unison); this is highly implausible and,
with a single before and single after time, cannot be
checked against the data, so ‘pseudo-replication’ is
apt. However, the assumption that site values, or dif-
ferences between sites, from several before and after
times have negligible correlation might be plausible
in some systems if the time gaps are large enough
and can be checked against the data, so ‘pseudo-
replication’ is inappropriate. A model that allows for
serial correlation is usually better, but there are many
of these, and any usable one will have to limit the
complexity or order of the correlation.

Thus the ‘plausibility’ question is not whether
the model is true (no model is completely so, not
even those based on randomization), but whether it
adequately represents our knowledge and uncertainty
about the system. Adequacy may require judgment
about tradeoffs between realism and simplicity. High
order correlations may be required for realism but, if
they are small, a model that ignores them is likely to
give better predictions and more accurate inferences.
Some cases of pseudo-replication (e.g. in physics)
might be justifiable if experience shows variation
among batches (e.g. laboratories) is negligible com-
pared with variation within them (e.g. repeated runs
in the same laboratory). Hurlbert implicitly allows
for such cases, by giving empirical evidence that the
ignored variation is not negligible in the cases he
criticizes.

Inferences cover causes only in experiments,
where source (i) is either used directly or implied
by source (ii). Without a chance model for the
assignment of units to treatments, inferences can
cover differences among groups receiving differ-
ent treatments but cannot distinguish group effects

from treatment effects (see Confounding). This does VAC047-

not mean that nothing can be said about cause:
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The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most
of our nationally owned public lands and natural resources. This includes fostering sound use of our
land and water resources; protecting our fish, wildlife, and biological diversity; preserving the
environmental and cultural values of our national parks and historical places; and providing for the
enjoyment of life through outdoor recreation. The Department assesses our energy and mineral
resources and works to ensure that their development is in the best interests of all our people by
encouraging stewardship and citizen participation in their care. The Department also has a major
responsibility for American Indian reservation communities and for people who live in island territories
under U.S. administration.

The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service's (MMS) primary
responsibilities are to manage the mineral resources located on the Nation's Outer Continental Shelf
(OCS), collect revenue from the Federal OCS and onshore Federal and Indian lands, and distribute
those revenues.

Moreover, in working to meet its responsibilities, the Offshore Minerals Management Program
administers the OCS competitive leasing program and oversees the safe and environmentally sound
exploration and production of our Nation's offshore natural gas, oil and other mineral resources. The
MMS Royalty Management Program meets its responsibilities by ensuring the efficient, timely and
accurate collection and disbursement of revenue from mineral leasing and production due to Indian
tribes and allottees, States and the U.S. Treasury.

The MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being
responsive to the public's concerns and interests by maintaining a dialogue with all potentially affected
parties and (2) carrying out its programs with an emphasis on working to enhance the quality of life for
all Americans by lending MMS assistance and expertise to economic development and environmental
protection.



